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Abstract Earthquake source properties such as seismic moment and stress drop are routinely estimated
from far-field body wave amplitude spectra. Some quantitative but model-dependent relations have
been established between seismic spectra and source parameters. However, large variability is seen in
the parameter estimates, and it is uncertain how the variability is partitioned among real variability in the
source parameters, observational error, and modeling error due to complexity of earthquake behaviors.
Earthquake models with dynamic weakening have been found to exhibit two different modes of rupture:
expanding-crack and self-healing pulse modes. Four representative models are generated to model
the transition from crack-like to pulse-like. Pulse-like rupture leads to development of a second corner
frequency, and the intermediate spectral slope is approximately 2 in most cases. The focal-sphere-averaged
lower P and S wave corner frequencies are systematically higher for pulse-like models than crack models of
comparable rupture velocity. The slip-weighted stress drop Δ𝜎E exceeds the moment-based stress drop Δ𝜎M

for pulse-like ruptures, with the ratio ranging from about 1.3 to 1.65, while they are equal for the crack-like
case. The variations in rupture mode introduce variability of the order of a factor of 2 in standard (i.e., crack
model-based) spectral estimates of stress drop. The transition from arresting- to growing-pulse rupture is
accompanied by a large (factor of ∼1.6) increase in the radiation ratio. Thus, variations in rupture mode may
account for the portion of the scatter in observational spectral estimates of source parameters.

1. Introduction

Estimates of earthquake source parameters such as seismic moment and rupture area are important to our
understanding the physics of source processes and provide important input for the quantification of seis-
mic hazards. These parameters are routinely measured from far-field seismic spectra. Low-frequency spectral
level, corner frequency, and the high-frequency spectral decay slope are related to seismic moment, rup-
ture area, and high-frequency energy radiation, respectively. Static stress drop, the difference between the
average shear stress on the rupture surface before and after faulting, provides insights into surrounding
tectonic environments where earthquakes are generated [e.g., Kanamori and Anderson, 1975; Allmann and
Shearer, 2007, 2009]. Observational studies for worldwide mb 5.5 earthquakes give stress drop estimates
in the range of 0.3 to 50 MPa, and, despite the large scatter, the mean value is at most weakly depen-
dent on magnitude [Allmann and Shearer, 2009]. In engineering applications, stress drop is recognized as
an important parameter that scales high-frequency ground motion [e.g., Hanks and McGuire, 1981; Boore,
1983]. Moreover, the apparent magnitude independence of stress drops provides potential physical con-
straints on the magnitude dependence of empirically based ground motion prediction equations [Baltay and
Hanks, 2014].

Stress drop may be estimated from measurements of coseismic slip and rupture area [Eshelby, 1957]. For
earthquakes without extensive surface rupture, those quantities are not accessible to direct measurement,
and (apart from relatively large events with extensive geodetic observations) they must be inferred from
the spectral content of far-field P and S waves. The seismic moment and source dimension, estimated from
low-frequency limit and corner frequency fc of seismic spectra, respectively, are then used to derive stress drop
estimates. Variability in determinations of stress drop arises not only from uncertainties and biases in obser-
vational data selection and processing but also from the source model assumptions used [e.g., Savage, 1966;
Brune, 1970; Sato and Hirasawa, 1973; Molnar et al., 1973; Dahlen, 1974; Madariaga, 1976; Kaneko and Shearer,
2014, 2015] and the methodology used in fitting the spectra to the model spectral shape [Shearer et al., 2006].
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Moreover, there is no agreement among investigators on which types of theoretical models should be used
for estimating the source dimensions and what degree of model simplification is appropriate [Kaneko and
Shearer, 2014].

The analytical solution for the elliptical uniform stress drop crack model in a homogeneous Poissonian
medium with major and minor axes A and B [Eshelby, 1957; Madariaga, 1977a] gives a relationship between
moment, area, and stress drop,

Δ𝜎 =
M0

c1SB
, (1)

where M0 is the seismic moment, S is the source area and c1 is a geometric parameter. For slip along the major
axis, c1 is defined as

c1 = 4

3E(m) +
[

E(m) − B2

A2 K(m)
]
∕m2

, (2)

where m =
√

1 − B2∕A2 and K(m) and E(m) are complete elliptical integrals of the first and second kinds,
respectively [Eshelby, 1957; Madariaga, 1977a]. In the special case of a circular source (R = A = B), the
relationship (equation (1)) simplifies to

Δ𝜎 =
7M0

16R3
, (3)

where R is the rupture radius. Given a theoretical model of the source parameterized by the single length scale
R, the source radius can be inferred from the focal-sphere average of corner frequency fc of the P or S wave
through [Brune, 1970; Madariaga, 1976]

fc = k
𝛽

R
, (4)

where 𝛽 is the shear wave speed and k is a constant that is model dependent. Hence, estimates of stress drop
can be computed as combinations of the expressions above:

Δ𝜎 = 7
16

(
fc

k𝛽

)3

M0. (5)

Among these variables involved in stress drop determination under the assumption of a circular crack, only
the value of k depends on which theoretical relationship is used to associate corner frequency with source
radius. Both fc and k (but not their ratio) depend on wave type, which we will indicate with superscripts. The
model proposed by Brune [1970] presumes a simple circular fault and obtained kS = 0.37, a value which is
frequently used for inferring source dimension and stress drop [e.g., Hanks and Thatcher, 1972; Archuleta et al.,
1982; Baltay et al., 2011]. An alternative is the source model of Sato and Hirasawa [1973], which includes nucle-
ation, constant-velocity spreading, and instantaneous stopping of circular rupture. This model is established
by presuming the Eshelby [1957] static solution; given rupture velocity Vr = 0.9𝛽 , the model gives kP = 0.42
and kS = 0.29. Although this model is consistent with a known static solution [Eshelby, 1957], explicitly incor-
porates propagation and stopping of the rupture front followed by slip cessation, and is favored by many
investigators [e.g., Prejean and Ellsworth, 2001; Stork and Ito, 2004; Imanishi and Ellsworth, 2013], a defect is that
slip ceases at the same instant everywhere over the fault plane. Accordingly, some refinements have been
proposed; for example, Molnar et al. [1973] make modifications such that slip at a point starts with the arrival
of the rupture front and continues until information from the edges of the fault is radiated back to the point.
Dahlen [1974] extended the analysis of rupture kinematics to an elliptical crack that keeps on growing with
the same shape.

The model of Madariaga [1976] has been widely accepted and used [e.g., Abercrombie, 1995; Prieto et al.,
2004; Shearer et al., 2006; Allmann and Shearer, 2007, 2009; Denolle et al., 2015]. Madariaga [1976] simulated a
dynamic singular crack model with constant rupture velocity using a staggered-grid finite-difference method
and found that kP = 0.32 for P wave and kS = 0.21 for S wave for Vr = 0.9𝛽 . Kaneko and Shearer [2014] con-
structed a dynamic model of expanding rupture on a circular fault with cohesive zone that prevents a stress
singularity at the rupture front. Their solutions (obtained with a spectral element method) give kP =0.38 and
kS =0.26 for the same rupture speed. Moreover, Kaneko and Shearer [2015] extended their analysis to symmetric
and asymmetric circular and elliptical models with subshear and supershear ruptures.
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Previous studies using dynamic theoretical source models [e.g., Madariaga, 1976; Kaneko and Shearer, 2014,
2015] for quantifying relationship between seismic spectra and stress drop are all based on so-called crack-like
rupture models, i.e., those in which the duration of slip at a point on the fault is comparable to the overall
duration of rupture. They have also been limited to source models with constant rupture velocity and pre-
scribed rupture termination edges. An alternative rupture mode, the so-called pulse-like rupture, has not
been considered in the development of dynamic model-based spectral theories (though the purely kine-
matic model of Haskell [1964] is pulse-like). Pulse-like rupture, in which slip duration at a representative point
(i.e., slip risetime) is short relative to the rupture duration, may occur when dynamic weakening occurs dur-
ing the most rapid sliding phase and is followed by restrengthening. Pulse-like rupture can also result from
the presence of secondary length scales (e.g., in the fault geometry, frictional parameter distribution, or stress
field) shorter than the overall rupture dimension. Short slip risetimes inferred from kinematic source inver-
sions were first interpreted as evidence of a local healing mechanism by Heaton [1990]. This mechanism has
also been introduced to explain the complexity of seismicity patterns [Cochard and Madariaga, 1996] and
the lack of heat flow anomaly on the San Andreas Fault [Noda et al., 2009]. Theoretical self-similar solution
for pulse-like rupture has been derived by Nielsen and Madariaga [2003]. Both crack- and pulse-like modes
have been observed in laboratory experiments and numerical simulations [e.g., Lu et al., 2010; Zheng and
Rice, 1998]. The mechanisms behind the pulse-like rupture modes that have been proposed include the
velocity-dependent friction [Heaton, 1990; Beeler and Tullis, 1996; Zheng and Rice, 1998; Gabriel et al., 2012],
coupling between slip and dynamic normal stress changes along bimaterial faults [Andrews and Ben-Zion,
1997; Ampuero and Ben-Zion, 2008; Dalguer and Day, 2009], the spatial heterogeneity of fault strength and ini-
tial shear stress [Beroza and Mikumo, 1996; Day et al., 1998; Oglesby and Day, 2002], the finite downdip width
of the seismogenic zone [Day, 1982; Johnson, 1992], and the reflected waves within the fault zone [Huang and
Ampuero, 2011].

Here we simulate four simplified models of rupture propagating and (in one case) stopping spontaneously in
expanding-crack and self-healing pulse-like modes. The spontaneous rupture model, described in section 2,
incorporates strong velocity weakening in a regularized rate- and state-dependent friction framework [Noda
et al., 2009; Rojas et al., 2009]. Section 3 gives a qualitative description of the simulation results. Computation
of far-field radiated spectra is described in section 4, and spectral parameters are discussed in sections 5 and 6.
Section 7 discusses retrieval of energy and stress drop estimates.

2. Crack-Like and Pulse-Like Modes Generation With Forced or Spontaneous
Termination

Among multiple mechanisms already mentioned for the generation of self-healing rupture, here we focus on
velocity-dependent friction. The rate and state framework on which we base the friction law we use in this
paper has its basis in laboratory experiments [e.g., Dieterich, 1979; Ruina, 1983; Marone, 1998]. We use the
regularized formulation of the friction coefficient f as proposed by Lapusta et al. [2000] [see also Shi and Day,
2013, Appendix B],

f (V, 𝜓) = asinh−1
[

V
2V0

exp
(𝜓

a

)]
, (6)

where the state variable 𝜓 evolves according to a slip law

�̇� = −V
L
[𝜓 − 𝜓ss(V)], (7)

𝜓ss(V) = aln

{
2V0

V
sinh

[
fss(V)

a

]}
, (8)

where V is slip velocity and fss(V) is the steady state friction coefficient at slip velocity V . In this study, the
steady state friction coefficient takes the form (following Dunham et al. [2011] and Shi and Day [2013], which
is a smoothed version of the form used by Noda et al. [2009] and Rojas et al. [2009])

fss(V) = fw +
flv − fw[

1 + (V∕Vw)8
]1∕8

, (9)
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Figure 1. Schematic illustration indicating how the weakening slip rate Vw generates the rupture mode transition
between crack-like and pulse-like modes. The red solid lines denote steady state shear stress dependent on slip rate.
Blue and purple dashed lines are radiation damping lines corresponding to different Vw values. For the small value of
Vw , the corresponding critical 𝜏pulse is below initial background shear stress and a crack-like rupture mode is obtained.
With Vw increased such that 𝜏pulse is elevated above the initial shear stress, based on the analysis in Zheng and Rice
[1998], the rupture mode becomes pulse-like.

which has a strongly velocity-weakening feature such that when V ≫ Vw , fss approaches a fully weakened
friction coefficient fw . Vw is called weakening slip velocity. When V≪Vw , fss approaches a low-velocity steady
state friction coefficient flv, i.e.,

flv(V) = f0 − (b − a)ln(V∕V0). (10)

In the foregoing equations, the constants a and b are the direct-effect and state evolution parameters,
respectively, and f0 and V0 are the reference values for the friction coefficient and slip rate, respectively.

One commonly applied way to generate a transition from crack-like to pulse-like rupture mode is to alter the
background shear stress level [e.g., Cochard and Madariaga, 1996; Perrin et al., 1995; Beeler and Tullis, 1996;
Zheng and Rice, 1998; Noda et al., 2009; Dunham et al., 2011; Gabriel et al., 2012]. Figure 1, based on the analysis
of Zheng and Rice [1998], shows this schematically. The transition from pulse-like to crack-like rupture mode
is controlled by the relative values of the initial shear stress 𝜏b and a critical stress value 𝜏pulse, where the
latter, as defined by Zheng and Rice [1998], is equal to the zero-velocity intercept of the radiation damping line
(blue dashed line) tangent to the steady state weakening curve (red solid curve). The rupture mode can be
changed from pulse-like to crack-like by varying the initial shear stress from below to above a fixed 𝜏pulse. For
convenience in comparing stress drop, we apply here an alternative scheme that maintains initial stress state
and instead varies the weakening slip rate Vw . As Figure 1 shows, this variation can also generate a transition
between crack-like and pulse-like modes as it shifts the steady state velocity-weakening curve toward the
right, thus shifting 𝜏pulse from below to above a fixed initial shear stress.

We examine rupture of a planar surface embedded in an infinite homogeneous Poissonian medium (Figure 2),
with velocity-weakening friction (i.e., a < b) operating on the interior of a circle of radius R, with velocity
strengthening (b < a) on the exterior (as a device to limit the rupture extent, with the ratio of (b−a)∕a exceed-
ing 10, an essentially unbreakable barrier). The material properties and initial stress state are given in Table 1.
For convenience of comparison among multiple simulation scenarios, the initial stress state is held fixed, as
are the frictional parameters, apart from the weakening slip velocity Vw . Variations of the latter parameter are
used to generate the transition from crack-like to pulse-like rupture. Rupture is initiated by imposing a shear
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Figure 2. Circular fault model for generating the transition between crack-like and pulse-like ruptures. The yellow circle
in the center is the nucleation area with overstress. The blue circular patch is velocity-weakening region where a < b
and rupture is allowable. Outer grey region requires a ≫ b, velocity strengthening, to arrest rupture. X and Y axes
correspond to in-plane and antiplane directions along which the green triangular symbols are receivers used to record
slip rate function in Figures 3–7.

stress perturbation Δ𝜏0(x1, x2) at the center of prescribed circular region (yellow circle in Figure 2), which
elevates the initial shear stress to 𝜏b(x1, x2) + Δ𝜏0(x1, x2). Δ𝜏0(x1, x2) has the following expression:

Δ𝜏0(x1, x2) = c exp
(

l2

l2 − R2
n

)
H(Rn − l)𝜏b(x1, x2), (11)

where c is a coefficient representing overstress amplitude, l is the distance between fault point (x1, x2) and

hypocenter (xh
1 , xh

2 ), l =
√

(x1 − xh
1 )2 + (x2 − xh

2 )2, Rn is the nucleation region radius, H is the Heaviside step

function, and 𝜏b(x1, x2) is the uniform equilibrium initial shear stress on the fault. The chosen shape func-
tion in equation (11) is smooth (infinitely differentiable and of compact support) in order to prevent singular
behavior at the edge of the nucleation zone. The amplitude of the shear stress perturbation and the size of
nucleation may affect the rupture mode, and we have chosen values that, in combination with the chosen
range of frictional parameters and background shear stress, permit rupture in either crack-like or pulse-like
mode. We examine the slip rate and stress evolution along two perpendicular profiles through the hypocenter,
an in-plane profile (aligned with the initial shear stress) and an antiplane profile (perpendicular to initial
shear stress). In addition to admitting pulse-like ruptures, the study further differs from related numerical
studies of seismic spectra [Madariaga, 1976; Kaneko and Shearer, 2014, 2015], in that it is based on a sponta-
neous rupture model rather than a fixed rupture velocity model. Rupture velocity is determined as part of the
problem solution and may fluctuate in response to, e.g., local background stress state, fault geometry, and
frictional conditions.

Accurate numerical results require adequate resolution of the cohesive zone, i.e., the portion of the fault sur-
face (at a given instant of time) which is slipping at an appreciable rate but has not yet fully weakened. Based
upon rough estimates [e.g., Shi and Day, 2013; Dunham et al., 2011] and detailed measurements [e.g., Rojas
et al., 2009] of the size of cohesive zone, we expect a cohesive zone dimension averaging 500 m or so, and we
formulate the numerical simulations to ensure at least 20 nodes within the cohesive zone. Based on this level
of resolution, the benchmark solutions in simulations done using slip weakening and rate- and state-based
friction laws investigated by Day et al. [2005] and Rojas et al. [2009], respectively, all indicated that relative RMS
errors for peak slip rate are much below 10%, with 1 to 2 orders of magnitude smaller error for their other
metrics (e.g., mean static slip and rupture velocity).
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Table 1. Models Parameter Values

Parameter Symbol Value

Bulk properties

Compressive wave speed VP 6000 m/s

Density 𝜌 2670 kg/m3

Poisson’s ratio 𝜈 0.25

Frictional parameters

Direct-effect parameter a 0.01

Evolution effect parameter b 0.014

Reference slip velocity V0 1 μm/s

Steady state friction coefficient at V0 f0 0.7

State evolution distance L 0.4 m

Weakening slip velocity Vw variable

Fully weakened friction coefficient fw 0.2

Initial conditions

Normal stress on fault 𝜎0 120 MPa

Background shear stress 𝜏b 38 MPa

Initial slip velocity Vini 2 × 10−9 m/s

Prescribed rupture radius R 18 km

Nucleation parameters

Nucleation radius Rn 3000 m

Overstress Δ𝜏0 1 × 𝜏b

We solve 3-D problem of rupture in a viscoelastic medium using SORD (Support Operator Rupture Dynamics)
[Ely et al., 2008, 2009]. This code uses a generalized finite-difference method with spatial and temporal
second-order accuracy. The frictional equations (6) through (10) are solved using the staggered velocity
state method of Rojas et al. [2009]. The full methodology has been verified in tens of benchmark scenarios
developed by the Southern California Earthquake Center [Harris et al., 2009], and this code has been used
in numerous studies of spontaneous dynamic rupture simulation and strong ground motion [e.g., Ely et al.,
2010; Ben-Zion et al., 2012; Shi and Day, 2013; Song et al., 2013; Baumann and Dalguer, 2014; Song, 2015;
Vyas et al., 2016].

3. Numerical Simulation Results

In this section, we present simulation results representing a range of rupture modes from crack-like to
pulse-like, as obtained by adjusting the weakening slip velocity Vw (letting it range from 0.05 m/s to
0.1 m/s). We examine four examples, including an expanding-crack case and three pulse-like cases. The lat-
ter are denoted growing, steady state, and arresting-pulse models, following commonly used terminology,
[e.g., Noda et al., 2009; Gabriel et al., 2012]. These names reflect the spatial pattern of slip, as seen in Figure 3,
which shows some details of the slip distributions for these cases. Figures 3a and 3b show the slip distribution
at equal time intervals (1 s), for profiles on the in-plane (Mode II) and antiplane (Mode III) axes, respec-
tively. For the expanding-crack case, slip amplitude is strongly dependent on the distance to hypocenter,
whereas all three pulse-like ruptures show more nearly uniform slip distributions. The mechanism for gener-
ating pulse-like rupture is that hypothesized by Heaton [1990] and can be seen from the shear stress spatial
and temporal evolution near the crack tip in Figures 3c and 3d. In the expanding-crack example, shear stress
remains almost constant following full weakening, whereas in pulse-like ruptures, the shear stress increases
in response to slip rate reduction behind the rupture front, eventually healing the rupture and creating a
pulse-like slip rate function.

Further details of the crack-like rupture example are shown in Figure 4. The characteristic decrease of slip
amplitude from the center toward the unbreakable barrier is evident in Figure 4a. This shape is, however,
not identical with the standard elliptical slip distribution (as a function of radial distance) for a purely static
crack, because there is some degree of variability of the static stress change (Figure 4b) with slightly larger
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Figure 3. Numerical simulation results of four rupture models: expanding crack (blue), growing pulse (green), steady
state pulse (pink), and arresting pulse (orange). (a and b) Time-dependent slip (1 s interval) along in-plane and antiplane
directions, and the characteristic slip profiles of the respective rupture modes are observed. The dependence of slip
on the distance from the hypocenter is minimal in pulse-like mode but (apart from the nucleation zone) has the
expected elliptical shape in the crack-like case. (c and d) Shear stress (black line) and slip rate (red line) for crack-like and
pulse-like ruptures. In the pulse-like mode (Figure 3d), shear stress has a restrengthening phase that heals the rupture
and reduces the slip duration, in contrast to the flat residual shear stress and longer slip duration in the crack-like
rupture (Figure 3c).

static stress drop along the antiplane direction and at the edges, due to the barrier as well as the directional
dependence of rupture velocity that is shown in Figure 4c. The slip rate function, shown in Figures 4d and 4e,
has the familiar long-tailed shape, terminated by stopping phases from the rupture edge, and shows the
characteristic increase in peak slip rate with the distance away from the hypocenter.

Details of the growing-pulse example are shown in Figure 5. Due to the self-healing behavior, the slip distri-
bution in this case (Figure 5a, with corresponding stress changes in Figure 5b) is more uniform than in the
expanding-crack model, but there are high-slip lobes along antiplane direction, near the rupture edge. These
two high-slip lobes are the result of the differing rupture velocities along the two axes indicated in Figure 5c.
Also seen in Figure 5a is a large slip patch associated with the artificial nucleation at the center of the fault.
The principal difference relative to the expanding-crack model is in the shape of the slip rate function, shown
in Figures 5d and 5e. The slip rate takes the form of a pulse with nearly constant rise time (weakly dependent
upon distance). Stopping phases are no longer evident at the stations close to boundary. However, the slip
rate function in this case still retains the feature of the expanding-crack model that peak slip rate increases
from center to edge. This feature has a significant effect (to be discussed later) on far-field wave shapes for the
growing-pulse case.

Most features of the steady state pulse model are similar to those of the growing pulse, but slip is more uni-
formly distributed and smaller on average, while mean stress drop and rupture velocity are both decreased
(Figures 6a–6c). The slip rate function is again pulse shaped, but with reduced rise time compared with the
growing-pulse case, and now the peak slip rate is almost invariant with the distance to edges (Figures 6d and
6e). The duration of the slip rate function is also almost invariant with distance, as in the growing-pulse model.
That is, the rupture front velocity is close to the healing front velocity (outside the nucleation zone), and this
is consistent with simulated results of Gabriel et al. [2012].

The arresting-pulse case (Figure 7) corresponds to a weakening slip velocity that is close to the maximum value
that permits a rupture to escape the nucleation area and results in a rupture model that stops spontaneously,
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Figure 4. Details of expanding crack, showing (a) slip, (b) static stress change (blue region means stress drop),
(c) rupture front time, and (d and e) slip rate functions.

i.e., before reaching the imposed velocity-strengthening barrier. In Figures 7d and 7e, peak slip rate decays to
0 as hypocentral distance increases. This feature of spontaneous arrest distinguishes this case from the other
three models. It is also a departure from previous rupture models used in the study of the far-field spectrum,
all of which involve arrest by edge barriers, with the result that the high-frequency spectral character in those
previous models is dominated by stopping phases.

4. Computation of Far-Field Radiations and Spectra

Our analysis of the simulations focuses on the far-field body wave spectra from these sources, calculated
for an elastic whole space, following Madariaga [1976] and Kaneko and Shearer [2014, 2015]. We use the
representation theorem of Aki and Richards [2002] to compute far-field P and S wave displacements at x⃗ as

ui(x⃗, t) =
𝛾i

4𝜋𝜌𝛼3r0
Cjkpq𝛾p𝛾qvknj ∫ ∫ Δu̇

(
𝜉, t − r

𝛼

)
dS

+
𝛿ip − 𝛾i𝛾p

4𝜋𝜌𝛽3r0
Cjkpq𝛾qvknj ∫ ∫ Δu̇

(
𝜉, t − r

𝛽

)
dS

(i, j, k, p, q = 1, 2, 3),

(12)

where 𝜌 is the density, 𝛼 and 𝛽 are P and S wave speed, r0 is the distance from a reference point on fault to
the receiver, Cjkpq is the elastic modulus, 𝛾q is the unit vector directed from source point to the receiver point,
vk is the unit vector normal to fault surface, nj is the direction of slip vector, 𝜉 is a point on fault, and r is the
distance between 𝜉 and x⃗ [Aki and Richards, 2002, equation 10.6]. Here we use the fact that the fault surface is
flat, neglect variations of the slip direction about its average, and employ the approximation that the receiver
distance is large compared with the source dimension (and r0 can be taken as the mean value of r, with the
understanding that |r − r0| ≪ r).
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Figure 5. Details of growing pulse, showing (a) slip, (b) static stress change, (c) rupture front time, and (d and e) slip rate
functions.

The far-field amplitude spectra are obtained by taking the amplitude of the Fourier transform of the far-field
P and S displacements, respectively. As is customary in observational studies, we introduce a specific spec-
tral model and use least squares fitting to estimate the model parameters. The Brune-type spectral model
(generalized for arbitrary high-frequency asymptotic slope) is used here,

U(f ) =
Ω0

1 + (f∕fc)n
, (13)

where Ω0 is the long-period spectral level proportional to the seismic moment, fc is the corner frequency,
and n is the spectral falloff rate. We estimate the spectral parameters Ω0, fc, and n for the simulated far-field
spectra by using a grid search to minimize their misfit to the Brune model spectrum in the frequency band of
0.05fc < f < 20fc. In calculating the misfit, a weight function is used to balance the contributions of different
frequency components by roughly equalizing contributions from equal increments of log(f ), a procedure with
precedent in observational studies [Prieto et al., 2004; Shearer et al., 2006].

5. Detailed Analysis of Properties of Far-Field Displacements and Spectra

In this section, we present for each source model the far-field displacements, the corresponding spectra, and
the consequent spherical distribution of the corner frequencies and falloff rates obtained from the spectral
fitting. We begin by summarizing the variation of the spectral corner frequency and falloff rate over the focal
sphere, interpreting them in terms of the rupture characteristics identified in section 3. For that purpose, we
select eight receivers with different takeoff angle (defined as the angle between the vector normal to the fault
and the vector pointing to the receiver from the source) and fixed azimuthal angle (22.5∘ to the x axis). Their
displacements and spectra, with stars representing computed corner frequencies, are plotted in Figure 8. The
models representing the four different rupture modes can be distinguished by the four colors (and this color
convention for the four rupture modes is followed throughout the paper).
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Figure 6. Details of steady state pulse, showing (a) slip, (b) static stress change, (c) rupture front time, and (d and e) slip
rate functions.

In discussing the far-field displacements, it is common to refer to their time domain form as “displacement
pulses.” These radiated pulses are not to be confused with the pulses of fault surface slip velocity that char-
acterizes the pulse-like rupture models. Similarly, we follow convention and use “rise time” in this section
to refer to the time between the onset and peak of the far-field displacement, which is not to be confused
with our (also conventional) use of the same term to refer to the duration of the slip pulses in the pulse-like
rupture models.

Several factors affecting the far-field displacement pulses and corresponding spectral shapes in Figure 8
should be noted. In these multilateral ruptures, the pulse rise times (duration between onset and peak value
of displacement pulse) are shorter in directions at low angle to the fault plane (high takeoff angle) than they
are in directions nearly normal to the fault. The rise time is controlled by both the focusing due to directiv-
ity and increasing peak slip rate in the direction of rupture propagation [Brune et al., 1979]. The overall pulse
width is longer at high takeoff angle, which is a (well-known) rupture directivity effect. The pulse width is
heavily influenced by stopping phases generated from the edges [Madariaga, 1976]. In the case where rup-
ture velocity is constant and stopping occurs on a circular boundary, delay times of the stopping phases from
the nearest and farthest points on the edge of the fault would be

t = R

(
1

VR
∓ sin 𝜃

c

)
, (14)

where R means fault size, VR is rupture velocity, c is wave speed, 𝜃 is takeoff angle, and minus sign denotes the
nearest and positive sign denotes the farthest stopping phases. In Figure 8, the peak value of displacement is
usually controlled by the nearest stopping phase and the approximate pulse width is controlled by the farthest
stopping phase, but the pattern is complicated by rupture velocity changes and variations in the rupture
mode and slip velocity distribution. Nucleation phases are common to all models (i.e., the four curves overlap
during first few tenths of a unit of dimensionless time), since they result from a common rupture initiation
procedure.
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Figure 7. Details of arresting pulse, showing (a) slip, (b) static stress change, (c) rupture front time, and (d and e) slip rate
functions.

As the takeoff angle is increased, the rise time is shortened while the overall duration is lengthened, as
suggested by equation (14). These two factors have opposing influences on high- to low-frequency spec-
tral ratios, with the result that the trend of corner frequency with takeoff angle is nonmonotonic, especially
for the crack-like model, consistent with the studies of Madariaga [1976] and Kaneko and Shearer [2014].
Compared with the crack-like rupture mode, the pulse-like ruptures have P and S waveforms with sharper
peaks, in the case of growing and steady state pulse models, and smoother shapes, in the arresting-pulse case
(due to disappearance of the stopping phase). These effects generate more complex behavior of the seismic
spectra, reflected in the variations in spherically average values of corner frequency and falloff rate among
the four models shown in Table 2. The rupture velocities given in Table 2, V2

r and V3
r , are along the X (in-plane

motion) and Y (antiplane motion) coordinate axes, respectively. Each is computed by a linear integral ∫ Vrdl∕L
along the ruptured portion of the coordinate axis, excluding the nucleation zone. In this equation, Vr is the
local rupture velocity, l is the distance variable, and L is the rupture length excluding the nucleation zone.

In the remainder of this section, we elaborate on the features of far-field displacement pulses, their corre-
sponding spectral amplitudes, and the spatial distributions (on the focal sphere) of the spectral parameters,
for the four representative rupture models described in section 3 and illustrated in Figures 9–12.

Figure 9 shows results for the expanding-crack model. Figures 9a and 9b show the spherical distributions
(calculated at 5∘ intervals) of normalized corner frequency (corner frequency divided by the ratio of source
radius to S velocity) and spectral falloff rate, while Figure 9c shows the far-field body wave displacement pulses
and Figure 9d shows their spectra. We use the same notation as Madariaga [1976], Kaneko and Shearer [2014],
and Kaneko and Shearer [2015]. Near the fault surface (equator or low latitudes in Figure 9), the resultant corner
frequencies are generally smaller than average, as a result of the wider displacement pulse width, as indicated
in Figure 9c. The variation of pulse width is due to source directivity and duration, which reflects the differ-
ential traveling time between the near and far side of fault termination signals (equation (14)). In addition,
spectral falloff rates are generally larger at higher-latitude stations. There are, in addition, some complexities
in the corner frequency and falloff rate distributions that arise from dynamic effects not present in previous,
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Figure 8. The radiated P and S displacement and spectra at eight takeoff angles from four dynamic rupture models
(denoted by four colors). Best fit corner frequency fc of each spectrum is indicated by a star.

fixed rupture velocity models. For example, four lobes of high falloff rate at high latitude (i.e., at takeoff angle
near fault normal) result from the dissimilar rupture behaviors along the in-plane and antiplane directions
typical in spontaneous rupture models (though corner frequencies do not show a corresponding strong
azimuthal dependence). We obtain the following spherically averaged corner frequencies and falloff rates for
P and S waves,

f P
c = kP 𝛽

R
= 0.35

𝛽

R

f S
c = kS 𝛽

R
= 0.27

𝛽

R
.

(15)

The k values are sometimes called normalized corner frequency, and for the convenience of comparing
results with previous studies and other scenarios here, we use normalized corner frequency, instead of orig-
inal corner frequency. Rupture velocities average 0.88𝛽 along in-plane and 0.84𝛽 along antiplane direction,
respectively. Spherically averaged spectral falloff rates for P and S waves, termed as nP and nS, are 2.2 and 1.9,
respectively. The values of kP and kS found here are very close to results of symmetrical circular rupture with
fixed rupture speed of 0.8𝛽 in Kaneko and Shearer [2014]. This is because for our spontaneously propagating
expanding-crack model, the far-field pulse width is mainly dominated by antiplane rupture, which has
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Table 2. Spectral Parameters of P and S Waves Among Four Modelsa

Expanding Crack Growing Pulse Steady State Pulse Arresting Pulse

V2
r 0.88𝛽 0.85𝛽 0.78𝛽 0.72𝛽

V3
r 0.84𝛽 0.81𝛽 0.74𝛽 0.66𝛽

kP 0.35 0.40 0.31 0.28

kS 0.27 0.36 0.31 0.34

kP

kS 1.3 1.1 1.0 0.8

nP 2.2 2.0 1.8 1.7

nS 1.9 1.9 1.8 1.9

kP
stack

0.38 0.43 0.31 0.28

kS
stack

0.30 0.39 0.31 0.31

kP
stack

kS
stack

1.3 1.1 1.0 0.9

nP
stack

2.2 2.0 1.8 1.8

nS
stack

2.0 1.8 1.8 1.9

aV2
r and V3

r denote rupture velocity along in-plane and antiplane directions. The kP

and kS are normalized corner frequencies, fc𝛽∕R, for the P and S waves, respectively.
The nP and nS are (absolute values of ) the spectral slopes for the P and S waves, respec-
tively. Unsubscripted quantities are obtained by averaging separate spectral estimates
obtained from each receiver direction. Subscript “stack” indicates that the quantity is
an estimate obtained from an amplitude spectrum (stack) formed by averaging the
individual amplitude spectra from all receiver directions.

Figure 9. Far-field displacements, spectra, normalized corner frequencies (fcR∕𝛽), and falloff rates for expanding-crack
model. (a) Distributions of P and S spectral corner frequencies (fcR∕𝛽) over the focal sphere. X and Y axes are
identical with those in Figures 4–7. (b) Distributions of P and S spectral falloff rate over the focal sphere. (c) Four
sampled displacements and spectra of P and S waves. Black dashed lines are best fit Brune model, and star symbol
denotes best fit corner frequency.
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Figure 10. Far-field displacements, spectra, normalized corner frequencies, and falloff rates for growing-pulse model.
(a) Distributions of P and S spectral corner frequencies over the focal sphere. (b) Distributions of P and S spectral falloff
rate over the focal sphere. (c) Four sampled displacements and spectra of P and S waves. Black dashed lines are best
fit Brune model, and star symbol denotes best fit corner frequency.

Figure 11. Far-field displacements, spectra, normalized corner frequencies, and falloff rates for steady state pulse model.
(a) Distributions of P and S spectral corner frequencies over the focal sphere. (b) Distributions of P and S spectral falloff
rate over the focal sphere. (c) Four sampled displacements and spectra of P and S waves. Black dashed lines are best
fit Brune model, and star symbol denotes best fit corner frequency.
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Figure 12. Far-field displacements, spectra, normalized corner frequencies, and falloff rates for arresting-pulse model.
(a) Distributions of P and S spectral corner frequencies over the focal sphere. (b) Distributions of P and S spectral falloff
rate over the focal sphere. (c) Four sampled displacements and spectra of P and S waves. Black dashed lines are best
fit Brune model, and star symbol denotes best fit corner frequency.

the lower rupture velocity. Slight differences with Kaneko and Shearer [2014] in the distributions of corner

frequencies and spectral falloff rates is attributable to spontaneity of ruptures, effects of the rupture initiation

method, and frequency band used in spectral fitting.

Figure 10 shows the results for the growing-pulse model. The variation of waveform pulse width with take-

off angle seen in the expanding-crack model is still apparent, while the azimuthal dependency is slightly

reduced. Relative to the expanding-crack case, the growing-pulse corner frequencies are higher and spectral

decaying slopes are steeper (Figures 10a and 10b), as can be inferred from the narrower far-field displacement

pulse width (Figure 10c). The estimated rupture velocities of 0.85𝛽 along in-plane direction and 0.81𝛽 along

antiplane direction are not appreciably (less than 4%) different from the expanding-crack case. The spherically

averaged corner frequencies for the growing-pulse case are

f P
c = kP 𝛽

R
= 0.40

𝛽

R

f S
c = kS 𝛽

R
= 0.36

𝛽

R
,

(16)

and spherically averaged nP and nS are 2.0 and 1.9, respectively. The normalized P and S corner frequencies

are increased by about 14% and 33%, respectively, relative to the expanding crack. This corner frequency

shift and the reduced spectral falloff rates result from the shorter slip duration in the growing-pulse model.

The P to S corner frequency ratio (∼1.1) is lower for the growing-pulse rupture than for crack-like models

(∼1.3 in our spontaneous crack model and ∼1.35 in the crack model of Kaneko and Shearer [2014] with similar

rupture velocity).

Figure 11 shows results for the steady state pulse model. In this case, in addition to the effect of takeoff angle,

there are also slight azimuthal variations (Figure 11a). Nucleation phases (sharp onset of wave pulses) are

larger relative to the overall pulse amplitude than in the crack and growing-pulse models. Spectral decay

slopes are lower compared with the growing crack and growing-pulse models, and there is an accompanying
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downward shift in corner frequency. Somewhat smaller rupture velocities (0.78𝛽 along in-plane and 0.74𝛽
along antiplane) also contribute to the reduction of corner frequencies. The spherically averaged corner
frequencies for the steady state pulse case are

f P
c = kP 𝛽

R
= 0.31

𝛽

R

f S
c = kS 𝛽

R
= 0.31

𝛽

R
,

(17)

and spherically averaged falloff rates for P and S waves are 1.8 and 1.8, respectively. The ratio between P and
S wave corner frequencies is ∼1.0, a reduction relative to the previously discussed cases, consistent with pre-
vious studies showing near equality of P and S corner frequencies for complex sources (e.g., the asymmetrical
circular model of Kaneko and Shearer [2015]).

Figure 12 shows results for the arresting-pulse model. This is the only case in which rupture growth stops spon-
taneously, without encountering the circular barrier. The absence of distinct stopping phases introduces some
significant differences compared with the previous models. The most prominent difference is the smoothing
of the peak of the radiated waveforms (Figure 12c), which were sharply cusped in the other models. In addi-
tion, for the arresting-pulse case the initiation phase is relatively large compared to the overall amplitude of
the radiated waveform. The normalized corner frequency for P waves (Figure 12a) has a pattern similar to that
of the other cases, with somewhat lower values for receivers at focal-sphere equatorial receivers (at high angle
to the fault normal) relative to near-polar receivers (low angle to the fault normal). But for S waves, that pattern
is reversed, with corner frequencies lower near the fault normal. Moreover, the falloff rates of S waves near the
focal equator are much larger than those at other locations. Average rupture velocities for the arresting-pulse
rupture (0.72𝛽 along in-plane and 0.66𝛽 along antiplane) are somewhat lower than for the previous cases.
The spherically averaged corner frequencies for the arresting-pulse model are

f P
c = kP 𝛽√

AB
= 0.28

𝛽√
AB

f S
c = kS 𝛽√

AB
= 0.34

𝛽√
AB

,

(18)

where A and B are major and minor axes of elliptical slip distribution in Figure 7a. The spherically averaged nP

and nS are 1.7 and 1.9, respectively. The high-frequency asymptotic slope reflects the lowest-order singularity
present in a waveform, so it might seem paradoxical that the n values (especially nP) are reduced in this case,
given that the waveform cusps have been smoothed. The reason is that we (deliberately) calculate n values
using a frequency band appropriate to observational studies (as explained in section 4). In the presence of
the complexities introduced by pulse-like rupture, the resulting n values actually characterize an intermediate
spectral slope, not the ultimate high-frequency asymptote. This issue is discussed in detail in the next section.
The P corner frequency is slightly (∼10%) larger than for the corresponding fixed rupture velocity crack model
estimate [Kaneko and Shearer, 2014], while the S corner frequency is ∼30% larger. In fact, the arresting-pulse
model has a P to S corner frequency ratio of ∼0.82, the only one of our cases in which the ratio is less than 1.
This apparently anomalous behavior is partly a consequence of the high spectral falloff rate for S at low lat-
itudes of the focal sphere. The higher spectral slope at the low latitudes has the effect of shifting the corner
frequency to higher frequencies, even though the high-frequency spectral energy is actually diminished in
the arresting-pulse model relative to the other models. The P wave corner frequency, in contrast, decreases
relative to the steady pulse model, roughly by the amount expected due to the decreased rupture velocity
(following Kaneko and Shearer [2014]).

These results are compared with those of previous studies [Brune, 1970; Sato and Hirasawa, 1973; Madariaga,
1976; Kaneko and Shearer, 2014], all of which were limited to crack-like modes with fixed rupture velocity.
As shown in Table 3, the spherical average corner frequencies of pulse-like modes shows dependency on
rupture velocity, which is also observed in previous models [Sato and Hirasawa, 1973; Kaneko and Shearer,
2014], though rupture velocity has less impact on the S corner frequency than on the P corner. Both P
and S wave corner frequencies are affected by rupture mode transition from crack-like to pulse-like. Results
in Table 2 also indicate that rupture mode only minimally affects the spectral falloff rate estimates; apart
from the arresting-pulse case, these slope estimates are near 2, consistent with other studies [Brune, 1970;
Madariaga, 1976; Kaneko and Shearer, 2014]. The P wave spectral slope estimate for the arresting-pulse case
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Table 3. Spectral Parameters Compared With Previous Studiesa

Model Name V2
r ∕𝛽 V3

r ∕𝛽 kP kS kP
KS

kS
KS

kP
Ma kS

Ma kP
SH

kS
SH

kS
B

Brune’s model Infinite Infinite 0.37

KS-Ma-SH models 0.9 0.9 0.38 0.26 0.32 0.21 0.42 0.29

⋆ Expanding crack 0.88 0.84 0.35 0.27

⋆ Growing pulse 0.85 0.81 0.40 0.36

KS-SH models 0.8 0.8 0.35 0.26 0.39 0.28

⋆ Steady state pulse 0.78 0.74 0.31 0.31

KS-SH models 0.7 0.7 0.32 0.26 0.36 0.27

⋆ Arresting pulse 0.72 0.66 0.28 0.34

KS-SH models 0.6 0.6 0.30 0.25 0.34 0.27
aKS: Kaneko and Shearer [2014], Ma: Madariaga [1976], SH: Sato and Hirasawa [1973], and B: Brune [1970]. The mod-

els labeled with stars are from the current study (their fonts are bold), and kP and kS are the parameters derived for
those models.

is lower, around 1.7. We emphasize that all spectral slope estimates were made using the procedure and band-
width described in section 4, which is intended to be consistent with observational practice. As shown in
the next section, the estimates for the pulse-like models actually represent intermediate spectral trends, not
asymptotic slopes.

6. Properties of Stacked Spectra

In the previous section, the average corner frequency estimate fc is an average of corner frequency of
each spectrum weighted by spherical subarea (following the methodology of Madariaga [1976], Kaneko and
Shearer [2014], and Kaneko and Shearer [2015]). On the other hand, observational studies [e.g., Prieto et al.,
2004; Shearer et al., 2006] frequently use an alternative corner frequency estimate, fc, derived directly from
spectral stacks. That approach may provide a more robust estimation, since it reduces effects of spectral distor-
tion due to source and propagation complexities. To investigate the effects of our rupture models on source
parameter estimates, we recalculate the average corner frequencies of P and S waves by stacking the loga-
rithms of all individual spectra of each wave type, evenly sampling the focal sphere. In Table 2, the values of
kP

stack, kS
stack, nP

stack, and nS
stack derived from stacked spectra are compared with those estimated by averaging

individual spectral parameters in the previous section. The mean differences between the two averages (con-
sidering all four rupture models together) are 4%, 8%, 1%, and 3% for kP , kS, nP , and nS, respectively, confirming
that observational estimates of source parameters are only minimally affected by performing the parameter
estimation on the spectral stack.

Stacked spectra for the four models are shown in Figure 13, along with Brune spectra fit to them by the method
described in section 4. The spectra in Figure 13 are only shown for frequencies well below the high-frequency
resolution limit of the numerical simulations. In the expanding-crack model, the Brune spectral function rep-
resents the stacked spectra of P and S waves with negligible misfit (Figures 13b and 13c, respectively). This is
also consistent with previous studies [Madariaga, 1976; Kaneko and Shearer, 2014, 2015]. The three pulse-like
models, however, have systematic misfits at high frequency. The mismatch takes the form of a secondary cor-
ner frequency that becomes progressively better developed as the rupture mode progresses from growing
to arresting-pulse behavior.

Double-corner frequency spectra are common in both theoretical and empirical seismic studies. Kinemati-
cally, the lower and higher corner frequencies typically correspond to rupture duration (controlled by fault
dimension) and slip rise time (duration of the slip velocity pulse), respectively [e.g., Ben-Menahem, 1962;
Haskell, 1964]. Physically, the explanation of the secondary corner in our pulse-like models is similar in
spirit to the partial-stress drop model suggested by Brune [1970]. In Brune’s partial-stress drop model (in
contrast to the conventional Brune model), slip is hypothesized to be arrested early, such that static stress
drop is less than dynamic stress drop, which is what occurs in our pulse-like spontaneous rupture models
(and similar behavior is implicit in some barrier and asperity models, e.g., Boatwright [1988] and Uchide and
Imanishi [2016]). The development of slip pulses was previously related to the occurrence of a secondary
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Figure 13. Slip rate duration distribution and stacked spectra of P and S waves for each model. (a) The distributions of
slip rate durations for each model (we scale the curve of expanding crack with a factor of 3 to highlight the linearly
decreasing distribution of slip duration). (b) Stacked P wave spectra (solid lines) and best fit Brune model (dashed lines).
Dotted curves are frequency distribution of K∕T , with K scaled such that K∕T is a rough indicator of the second corner
frequency. (c) Stacked S wave spectra and best fit Brune model.
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spectral corner in the numerical modeling of Shaw [2003]. Numerous observational studies have proposed
double-corner frequency spectral models [e.g., Atkinson and Silva, 1997], and the issue deserves renewed
attention in light of observational results such as those of Denolle and Shearer [2016] documenting a
systematic emergence of a secondary spectral corner for the largest events in the global data set and
Archuleta and Ji [2016] documenting a break in scaling of LogPGA and LogPGV versus moment magnitude M
around M ∼ 5.3.

Anticipating that the second corner frequency can be related to slip rise time (by analogy with the Haskell
fault model), we investigate the distributions (histograms) of slip duration for each model (Figure 13a). In
Figure 13a, the ordinate gives the percentage of the total rupture area having slip rate duration within the
0.5 s wide bin centered at the abscissa value. The expanding-crack model has a very broad distribution of slip
duration over the interval from 0.5 s to 10 s (the curve of the expanding crack is scaled by a factor of 3 to
highlight this feature in Figure 13a), but all of the pulse-like ruptures have relatively narrow distributions of slip
duration. This can be partially understood as a result of a diminished influence of the overall rupture geometry
for pulse-like ruptures compared with crack-like modes; both total slip and slip velocity of these pulse-like
ruptures are controlled principally by local shear stress and frictional properties rather than by global rupture
features such as rupture edge diffractions. We assume that the second corner frequency scales inversely with
the mean slip duration time:

f 2nd
c = K

T̄
, (19)

where T̄ is mean slip velocity duration and K is a constant to be determined. In Figures 13b and 13c, solid
and dashed lines are spectral stacks computed from the simulations and Brune’s model spectra, respectively.
The presence of a second corner frequency shows up as a clear departure from the constant spectral slope
of the Brune model. The dotted lines in Figures 13b and 13c are curves of K∕T distribution derived from
Figure 13a, for a fixed value of K for each wave type (around 1.8 and 1.5 for P and S waves, respectively) that
was determined, by trial and error adjustment, such that the distribution peak (from the dashed curves) coin-
cides with the lowest frequency where the spectral stack departs visibly from the best fit Brune model. The
proportionality between this frequency and T̄ confirms, unsurprisingly, that if a secondary corner frequency
is interpreted in terms of pulse-like rupture, its value provides an estimate of mean slip duration. The upper
spectral asymptote is not well determined in the simulations, however, so this estimate of K provides only a
lower bound on the value of the second corner frequency (where the latter is defined as the frequency of inter-
section of the intermediate and upper spectral asymptotes) and thus may not be directly comparable with
other K estimates (for example, a similar parameter in Savage [1972] equals 1 and in Denolle and Shearer [2016]
equals 1∕𝜋).

As the rupture model evolves from a growing- to an arresting-pulse mode, the spectral decay above the
second corner becomes steeper, as seen in Figures 13b and 13c. This transition reflects the relative suppres-
sion of stopping phases, especially in the decaying pulse model, consistent with the expected dominance
of stopping phases in the high-frequency limit [Madariaga, 1976, 1977b]. In the presence of the second cor-
ner and increased rate of high-frequency decay, fitting over a broad frequency band to the conventional,
single-corner frequency Brune spectral function can bias the estimate of the first corner frequency, leading
to uncertainties and bias in the stress drop estimate. For example, for shallow thrust earthquakes, Denolle and
Shearer [2016] find that the conventional Brune model with a single-corner frequency is unable to fit spec-
tra for high-magnitude events, and a double-corner frequency model improves the fitting and gives more
consistent estimates of the first corner frequency in the sense that the subsequent stress drop estimates are
roughly invariant with seismic moment (given additional scaling assumptions, i.e., the length to width scaling
of Leonard [2010]).

7. Energy Partitioning and Stress Drop

The partitioning of radiated energy between P and S waves is rupture model dependent, and we use our four
source models to show the effect of rupture mode on the P/S energy ratio. Radiated energy can be calculated
from each simulation using fault plane stresses and velocities via [Rudnicki and Freund, 1981]

Er = ∫ ∫
𝜏0 + 𝜏f

2
ΔudS − ∫

∞

0 ∫ ∫ 𝜏(t)Δu̇(t)dSdt, (20)
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Table 4. Comparison Energy Partitioning and Static Stress Drop Among Four Modelsa

Expanding Crack Growing Pulse Steady State Pulse Arresting Pulse

Radiated Energy

Er(1015J) 21.01 9.29 2.92 1.14

E′r (1015J) 20.89 9.17 2.88 1.12

Ratio between ES
r and EP

r

ES
r ∕EP

r 20 29 27 24

ES
r ∕EP

r * 11 18 23 46

Static stress drop

𝚫𝝈E (MPa) 15.69 9.37 6.41 5.53

𝚫𝝈M (MPa) 15.66 7.13 4.61 3.36

Radiation ratio

𝜼R 0.40 0.65 0.46 0.41

aAll underlined parameters are computed directly from fault plane stresses and slip from the numerical
simulations. Parameter labeled with a prime is derived from far-field displacements or spectra calculated
from the simulations. The energy ratio labeled with an asterisk represents results from equation (22)
[Boatwright and Fletcher, 1984].

where Δu̇ is the slip velocity, 𝜏0 and 𝜏f are initial and final shear stress, and 𝜏(t) is the shear stress as a function
of time. The corresponding estimate of radiated energy from far-field body wave displacements is

E′
r = 𝜌∫

∞

0 ∯
[
𝛼(VP)2 + 𝛽(VS)2

]
dΣdt, (21)

where VP and VS are far-field velocities of P and S waves, the integration is over a sphere surrounding the fault,
and the prime symbol here denotes the parameter derived from far-field observations instead of from the
fault surface. Before considering the P and S contributions separately, we first verify the internal consistency
of our calculations by comparing estimates (20) and (21) for the total energy. These two energy estimates, for
each source model, are listed in Table 4 and show differences of the order of 1 or 2% (which we attribute to
errors from focal-sphere sampling, together with effects of the small artificial viscosity used in the simulations
and neglected in the energy balance calculations) verifying the self-consistency of the far-field and on-fault
estimates.

The computed P and S radiated energies for the crack-like and pulse-like rupture models are shown in Table 4.
The P/S ratio for the crack-like rupture mode, 20, is similar to values of 24.4 for the analytical model of Sato and
Hirasawa [1973] and 21.8 for the numerical model of Kaneko and Shearer [2014]. The S/P energy ratio is larger
for pulse-like ruptures than for the crack-like case and larger for growing and steady state pulses than for the
arresting-pulse rupture mode. This pattern mirrors the behavior of the radiation ratio 𝜂R [Noda et al., 2013],
also shown in Table 4 and examined further in section 8. We also note that our radiated energy ratios differ
markedly from what would be predicted if the RMS P and S wave spectral shapes were scaled (both amplitude
and frequency axes) versions of each other (something also noted by Kaneko and Shearer [2014]). As shown
by Boatwright and Fletcher [1984], the latter estimate is

ES
r

EP
r

= 1.5
(
𝛼

𝛽

)5
(

f S
c

f P
c

)3

. (22)

As Table 4 shows, this estimate underpredicts the energy ratio of the crack-like model by about a factor of 2
and overpredicts that of the arresting-pulse model by a similar factor.

Fault slip and stresses from the simulations provide two complementary measures of average stress drop,
denoted Δ𝜎E and Δ𝜎M by Noda et al. [2013]. The former is the average static stress drop weighted by the
final slip,

Δ𝜎E =
∫∫ Δ𝜎ΔudS

∫∫ ΔudS
, (23)
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Figure 14. The ratio between spectrally estimated stress drop and actual moment-based stress drop for the four
simulated rupture models. Four sets of parameters, kP and kS , are used to investigate how large the variabilities of
estimations can be. The vertical axis is logarithmic. Also shown is the ratio between Δ𝜎E and Δ𝜎M for each simulation,
denoted by black squares, demonstrating the divergence of these two averages as rupture mode changes from
crack-like to pulse-like.

where Δ𝜎 is the static stress drop as a function of position on the fault surface. As Shao et al. [2012] point out,
Δ𝜎E is just twice the ratio of so-called “available elastic energy” [Kanamori and Rivera, 2006] to the seismic
potency. Values obtained directly from equation (23) are listed in Table 4. An alternative measure, called
moment-based stress drop [Noda et al., 2013], is stress drop weighted by the slip distribution E due to a
(hypothetical) uniform stress drop on the same fault surface,

Δ𝜎M =
∫∫ Δ𝜎EdS

∫∫ EdS
. (24)

For the circular rupture, equation (24) gives the standard formula equation (3), with the left-hand side inter-
preted now asΔ𝜎M (and a similar expression can be derived for an elliptical rupture). The corresponding values
of Δ𝜎M for the simulations are listed in Table 4 for comparison with Δ𝜎E values. If equation (3) is applied, with
rupture radius R estimated from corner frequency (equation (4)) using a crack-like model for k, those radius
estimates will be biased for the pulse-like models by the ratio of the crack- to pulse-like k values in Table 3
(i.e., factors of 0.87, 1.13, and 1.25 for P waves and 0.75, 0.87, and 0.8 for S waves, for growing, steady state,
and arresting pulses, respectively). Subsequently using equation (3) to estimate stress drop from radius would
lead to stress drop biased by the cube of those factors (equation (5)), if the relationship between mean slip
(or moment) and stress drop followed the crack-like model like equation (1) or (3). However, actual biases in
the stress drop estimates are generally more complex than that, because the relationship between mean slip
and stress drop also becomes modified for pulse-like ruptures.

We can examine the variability in spectral estimates of stress drop resulting from presumably unknown vari-
ations in rupture mode. Using values of kP and kS from each of four crack-like models ((1) Madariaga [1976],
(2) Kaneko and Shearer [2014], (3) Brune [1970], and (4) the expanding-crack model of the current study),
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Figure 15. Slip distribution, comparing crack-like and pulse-like models. The blue solid and dashed lines are the final
slip distribution from expanding-crack model and best fit Eshelby’s solution. The pink solid and dashed lines are the final
slip distribution from steady state pulse model and best fit Eshelby solution. In both sets of lines, the degree of
discrepancy between obtained models and the theoretical static solution determines the appropriateness of
conventional equation (1) or equation (3) for computing static stress drop. The misfit at small radius is due to the
nucleation effect (different stress drop in the nucleation zone).

we make “blind” stress drop (Δ𝜎M) estimates from spectral parameters M0 and fc obtained from the grow-
ing, steady state, and arresting-pulse models, respectively. These estimates are denoted Δ𝜎Ma, Δ𝜎KS, Δ𝜎B,
and Δ𝜎crack, respectively. Results for the four stress drop estimates, normalized by each of the actual stress
drops Δ𝜎M of the pulse-like ruptures (from Table 4) are shown in Figure 14. For P wave estimates, the rup-
ture mode introduces overestimates and underestimates ranging over roughly a factor of 2 either way. The
S wave estimates have a somewhat larger range, due to a substantial overestimate of Δ𝜎M by the Madariaga
[1976] model.

The S wave estimates based on Kaneko and Shearer [2014] and the crack-like model of the current study are
very similar, each biased high by about a factor of 2 for the pulse-like ruptures and each showing about a
factor of 2 variability about that factor. The upward bias is what would be expected as a consequence of the
S wave rupture radius underestimates noted above. That upward bias is sharply reduced, however, when we
compare with Δ𝜎E (open squares in Figure 14) instead of Δ𝜎M, since both spectral estimates Δ𝜎KS [Kaneko
and Shearer, 2014] and Δ𝜎crack (current study) represent quite accurate Δ𝜎E values for the steady state and
arresting-pulse ruptures. The Brune estimate is low for the crack-like rupture model but within ±40% for the
pulse-like ruptures.

This reduction of bias when bias is taken relative to Δ𝜎E is a result of the differences in spatial distribution of
slip of the pulse- versus crack-like models. For the pulse-like models, Δ𝜎E exceeds Δ𝜎M, with the excess being
related to the level of heterogeneity of stress drop [Noda et al., 2013]. As indicated in Table 4 and Figure 14,
Δ𝜎E and Δ𝜎M for the expanding crack are nearly identical as expected. However, in pulse-like ruptures, Δ𝜎M

is 24%, 28%, and 40% smaller than Δ𝜎E in growing, steady state, and arresting pulses, respectively. Such a
phenomenon is similarly observed in [Noda et al., 2013]. The reason is that the healing of the pulse-like rupture
freezes in the static slip before it reaches the elliptic shape of the circular static crack, which has the form
[Eshelby, 1957]

Δu(r) = I
√

R2 − r2[1 − H(r − R)], (25)

where I is a constant proportional to the stress drop, R is the rupture radius, r is the distance to hypocenter,
and H is a Heaviside function. In Figure 15, the dashed and solid lines denote the best fit solutions of the form
of equation (25) and the simulated models (shown along the in-plane direction), respectively. As expected,
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the crack-like rupture model closely follows the Eshelby solution, consistent with the close agreement we
found between Δ𝜎M and Δ𝜎E . The pulse-like model deviates much more from the Elshelby solution, with the
main difference being weaker dependency of slip on hypocentral distance (apart from the region right around
the nucleation patch). The resulting contrast in spatial patterns of slip between crack- and pulse-like rupture
elevates Δ𝜎E relative to Δ𝜎M in the pulse-like case.

8. Discussion

The slip pulse durations in our models are mostly in the range of 1–2 s (Figure 13a). This range is also repre-
sentative of slip pulse durations inferred in observational studies, at least for shallow crustal earthquakes [e.g.,
Heaton, 1990; Somerville et al., 1999]. The source dimension of our simulations is such that the secondary cor-
ner introduced by the occurrence of these pulse-like ruptures only affects the spectral shape at frequencies
exceeding the lower corner frequency by at least a factor of 20. The spectral fitting procedure used here (moti-
vated by standard observational practice) appears to provide reliable estimates of the lower corner frequency
and the intermediate spectral slope in this case, since the frequency band used in fitting, 0.05fc < f < 20fc,
is entirely below the higher corner frequency. As indicated in Figure 16, further narrowing the frequency
band to 0.05fc < f < 10fc, as in Kaneko and Shearer [2014, 2015], only slightly alters the spectral fit (and only
at low takeoff angles). The use of the narrower band suppresses some of the azimuthal variation in the corner
frequency distribution (e.g., near the z axis in Figure 11a) but has little effect on the averaged values, which
are summarized in Table 5. Compared with the results from the narrower band, k and n estimates from the
broader band differ by a maximum of around 10% and 12%, respectively (comparing Tables 2 and 5). When we
increase the upper frequency limit to 30fc (very near to the second corner frequency), there is no significant
change in the estimates of k and n. In summary, the results are fairly insensitive to our choice of the spectral
range, although this conclusion depends upon the fact that the rupture dimension in the models was large
enough to provide good separation between the corner frequencies.

In observational studies, there exists great variability in estimates of earthquake parameters derived from seis-
mic spectra, such as stress drop and radiated energy. Simulations for which the earthquake parameters are
precisely known (from near-field calculations) are a valuable aid in the interpretation of spectra in terms of
earthquake parameters and can provide useful insight into the origin of the variability of spectrally derived
estimates. Our analysis of the spectral consequences of the rupture type transition from classic crack-like to
pulse-like mode may have application in the estimation of earthquake parameters for particular earthquakes.
For example, we may be able to sharpen some parameter estimates in cases where we have independent
evidence of rupture mode, e.g., from finite-fault inversion. In such cases, our results for empirical parame-
ters kP and kS (section 5) and for the effect of pulse-like rupture on stress drop estimation (section 7) may be
used to refine spectral estimates of source parameters. Likewise, the spectral falloff rates (nP and nS) could
help refine frequency domain radiated energy estimates (obtained by the application of Parseval’s theorem
to equation (21)), which are highly dependent on presumed spectral shapes [e.g., Hirano and Yagi, 2017]. In
other cases, absent detailed kinematic inversion results (especially for small to intermediate earthquakes),
rupture types are usually unknown to us. In those cases, the results (section 6) showing double-corner fre-
quency spectral shapes of pulse-like models may provide interpretive guidance. For example, Denolle and
Shearer [2016] find that a double-corner frequency model fits their analysis of large, shallow thrust earth-
quakes, and since the upper corner appears to be too high in frequency to be related to a fault dimension, a
possible interpretation would relate the upper corner to slip pulse duration (and Denolle and Shearer [2016]
discuss other interpretations). Future work resolving higher frequency spectral properties may provide more
quantitative constraints on the association of pulse width with the second corner frequency, the extent
to which pulse width may scale with other parameters (e.g., moment) and the asymptotic decay slope for
pulse-like ruptures.

As noted earlier, the simulations provide precise values of radiated energy, seismic moment, and static stress
drop for all the rupture models, and this enables us to consider the implications of rupture mode for other
quantities derived from these source parameters. The radiation ratio (we follow the terminology of Noda et al.
[2013] for what is sometimes called the radiation efficiency, though its value can exceed 1), defined as

𝜂R =
2𝜇ER

M0Δ𝜎E
, (26)
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Figure 16. Effect of frequency band on spectral fitting. (a) Black solid lines are P and S spectrum at 22.5∘ takeoff angle.
The red and blue dashed lines are best fit Brune model using 0.05fc ∼ 10fc and 0.05fc ∼ 20fc , respectively. At low takeoff
angle, slight difference of fitting occurs at high frequency. (b) Black solid lines are P and S spectrum at 82.5∘. The red
and blue dashed lines are best fit Brune model using 0.05fc ∼ 10fc and 0.05fc ∼ 20fc , respectively. At high takeoff angle,
both bands result in identical fitting.

Table 5. Spectral Parameters of P and S Waves for the Four Models Obtained, Using
Modified Frequency Band 0.05fc < f < 10fc

Expanding Crack Growing Pulse Steady State Pulse Arresting Pulse

V2
r 0.88𝛽 0.85𝛽 0.78𝛽 0.72𝛽

V3
r 0.84𝛽 0.81𝛽 0.74𝛽 0.66𝛽

kP 0.38 0.40 0.32 0.30

kS 0.29 0.35 0.32 0.34

kP

kS 1.3 1.1 1.0 0.9

nP 2.3 2.0 1.9 1.9

nS 2.0 1.7 1.8 1.9

kP
stack

0.40 0.43 0.34 0.30

kS
stack

0.31 0.38 0.32 0.32

kP
stack

kS
stack

1.3 1.1 1.1 1.0

nP
stack

2.3 2.0 1.9 1.9

nS
stack

2.0 1.8 1.8 1.9
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Figure 17. Radiation ratio variation with rupture mode transition.
(a) Radiation ratio (red dashed line) and slip gradient (rupture type
indicator, blue dashed line) of four models shown with rupture mode is
changed to crack-like; radiation ratio has an apparent reduction. (b) Similar
pattern can be observed when we switch to adjust initial shear stress to
regenerate a rupture mode transition.

is an interesting example, and values
are compiled in Table 4 and shown in
Figure 17a (red triangles). It is required
to clarify that the static stress drop
here denotes Δ𝜎E because in consid-
ering energy partitioning, we need
energy-based stress drop estimates
instead of moment-based estimates
(Δ𝜎M), although they are not easy to
seismologically distinguish them. The
blue star symbol denotes the aver-
age amplitude of the final slip spa-
tial gradient, which can serve as a
good indicator of rupture type (the
small value of slip gradient implies
flat slip distribution, as in the more
pulse-like ruptures, and the large value
denotes crack-like mode. Its mathe-
matical expression is ∫L | dΔu(x)

dx
|dl∕L in

which L is rupture length along the
in-plane direction (X), l is the distance
variable, and Δu is the slip function).
When the rupture type transits from
pulse-like to crack-like (from left to
right in Figure 17a), the radiation ratio
initially increases, has a maximum for
the growing-pulse case, and then falls
for the crack-like case. This behavior is
probably a consequence of the under-
shoot of the static stress drop, rela-
tive to the maximum dynamic stress
drop, in pulse-like models, as seen in
Figure 3b. To verify that this depen-
dence of radiation ratio on rupture

mode is not specific to our method of inducing the rupture mode transition (via scaling of Vw), we do a sim-
ilar set of simulations but inducing the transition from pulse-like to crack-like modes by raising initial shear
stress (with Vw fixed). We also add more simulations (a total of 22) to refine the resolution of the rupture
mode transition. The results, shown in Figure 17b, confirm that the transition of rupture from decaying to
growing-pulse-like behavior is associated with a large (up to factor of 1.6), systematic increase in radiation ratio
and that the transition to crack-like rupture corresponds to an equally large drop in radiation ratio (the small
increases in efficiency for the highest initial stress case is associated with a supershear rupture transition).

9. Conclusions

Spontaneous rupture simulations with rate and state friction and dynamic weakening show a rupture mode
transition from crack- to pulse-like under adjustment of the critical weakening velocity Vw . Four representative
models provide a basis for examining the effect of rupture mode on source parameter estimates: an expand-
ing crack, a growing pulse (increasing peak slip velocity with rupture radius), a steady state pulse (nearly
constant peak slip velocity), and an arresting pulse (with spontaneous rupture termination). Relative to a
crack-like rupture with similar geometry, a pulse-like rupture leads to additional complexity in the far-field dis-
placement spectra, including a double-corner frequency structure, with the higher corner frequency inversely
proportional to pulse duration. The focal-sphere-averaged lower P and S wave corner frequencies (normal-
ized to source dimension) are systematically higher for pulse-like models than for crack models of comparable
rupture velocity (Table 3), while the lower P wave corner is less sensitive to rupture mode. The P/S cor-
ner frequency ratio also varies systematically with rupture mode, from ∼1.3 for the crack model to ∼0.9
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for the arresting pulse (Table 2). The spectral slope (above the lower corner) in most cases is only slightly
affected by rupture mode; in nearly all cases, this slope is in the range −2±0.2, with the P spectral slope more
sensitive to rupture mode than the S slope (Table 2).

The slip-weighted stress drop Δ𝜎E exceeds the moment-based stress drop Δ𝜎M for pulse-like ruptures, with
the ratio ranging from about 1.3 to 1.65, while they are equal for the crack-like case. The variations in rup-
ture mode modeled in this study introduce variability of the order of a factor of 2 in standard (i.e., crack
model based) spectral estimates of stress drop, accompanied by some systematic bias. The S wave spectral
estimates for the pulse-like ruptures are biased high by about a factor of 2 when stress drop is interpreted
as Δ𝜎M but show little bias when stress drop is interpreted as Δ𝜎E (and P wave estimates show less system-
atic bias). The transition from arresting- to growing-pulse rupture is accompanied by a large (factor of ∼1.6)
increase in the radiation ratio (“radiation efficiency”), with a comparable drop in that ratio at the transition
from growing-pulse to crack-like rupture. Thus, variations in rupture mode may account for portion of
the scatter in observational spectral estimates of source parameters, and, in instances in which indepen-
dent constraints on rupture mode are available, the results derived here (in particular, values for rupture
style-dependent normalized corner frequencies kP and kS and spectral slopes nP and nS) may help sharpen
those estimates.
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