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Fourth-Order Staggered-Grid Finite-Difference Seismic Wavefield

Estimation Using a Discontinuous Mesh Interface (WEDMI)

by Shiying Nie, Yongfei Wang,* Kim B. Olsen, and Steven M. Day

Abstract In a realistic geological structure with a large contrast in seismic wave-
speed between shallow and deep regions, simulation of seismic wave propagation
using a spatially uniform grid can be computationally very demanding, due to over-
discretization of the high-speed material. Thus, numerical methods that allow for
coarser discretization of the faster regions have the potential to be much more effi-
cient. Discontinuous mesh (DM) methods, operating by exchanging wavefield infor-
mation between media partitions discretized with two different grid spacings, provide
a convenient way to improve such efficiency issues. Unfortunately, discontinuous
staggered-grid finite-difference (FD) methods typically suffer from inherent stability
problems, in particular in strongly heterogeneous media, arising from numerical noise
generated at the overlap of the two regions with different grid spacing. We have de-
veloped a 3D fourth-order velocity-stress staggered-grid FD DM anelastic wave
propagation method (AWP-DM) for seismic wavefield estimation using a discontinu-
ous mesh interface (WEDMI) between fine and coarse meshes. Benchmarks in models
with realistic 3D velocity variations and finite-fault sources across the grid interface
show stable results for a number of timesteps, exceeding the need dictated by current
high-frequency ground-motion simulations. In the case of a factor-of-three ratio be-
tween the coarse and fine grid sizes, this method is capable of producing a level of
accuracy comparable to that from the uniform fine-grid scheme, using at least 7–8 grid
points per minimum S wavelength inside the mesh overlap zone.

Electronic Supplement: Additional stability tests with wavefield estimation
using a discontinuous mesh interface (WEDMI) and Lanczos 13p.

Introduction

Seismic wave propagation is a useful tool for modeling
and imaging underground structures and earthquake sources.
However, despite more widespread access to high-perfor-
mance computing facilities in recent years, simulating high-
frequency ground motions in a large-scale geologically
realistic 3D structure is still an extremely computationally
challenging problem. One of the most important reasons is
the high contrast of seismic-wave velocities found in real
earth structure, especially in sedimentary basins. Simulation
of wave propagation that ignores the (often relatively) thin
low-velocity regions produces inaccurate results, which can
have important societal consequences (e.g., underprediction
of seismic hazards). On the other hand, the low-velocity sedi-
ments are computationally extremely expensive to include,

using a uniform grid size that is determined by the lowest
velocity. The resulting oversampling for deeper region with
higher velocity inevitably leads to a considerable increase of
computational time and memory. For this reason, it is desir-
able to be able to use different discretizations in shallow and
deep regions. Moczo (1989) and Pitarka (1999) developed
finite-difference (FD) methods with grid spacing changing
continuously over a distance separating a fine and coarse
mesh, which are often less efficient and flexible to apply
in realistic models as compared to discontinuous mesh
(DM) methods. Jastram and Behle (1992) first designed a
DM in their 2D acoustic FD method in which they enabled
any integer ratio of coarse-to-fine grid size. Because these
methods were proposed, different varieties of the DM ap-
proach, with the goal to more accurately and efficiently
model realistic geological settings, have been proposed
(e.g., Aoi and Fujiwara, 1999; Tessmer, 2000; Hayashi et al.,
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2001; Wang et al., 2001; Kang and Baag, 2004a,b; Kristek
et al., 2010; Zhang et al., 2013).

However, several authors and users of the FD discon-
tinuous grid implementations found that the methods suffer
inherently from stability problems after a large number of
timesteps (e.g., S. Aoi, written comm., 2016). We also note
that the Lanczos filter that is already applied to several dis-
continuous algorithms (Kristek et al., 2010; Zhang et al.,
2013; 2D Mimetic Operators from O. Rojas, unpublished re-
port, 2014; see Data and Resources) has been proved to im-
prove the stability of these schemes, but the performance of
stability may vary in different numerical algorithms and
material models (Zhang et al., 2013; J. Kristek, written
comm., 2016; 2D Mimetic Operators from O. Rojas, unpub-
lished report, 2014; see Data and Resources).

In this article, we introduce a DM into a fourth-order
staggered FD scheme to simulate anelastic wave propagation
(AWP; Olsen, 1994; Olsen et al., 1995). The continuous
mesh implementation is now developed to be highly scalable
on both CPU and GPU platforms (AWP-ODC [Olsen, Day
and Cui]) used for large-scale simulations including Tera-
Shake (Olsen et al., 2006), TeraShake-2 (Olsen et al.,
2008), ShakeOut-D (Olsen et al., 2009), and M8 (Cui et al.,
2010). AWP-ODC is also currently an important community
modeling tool to better understand the dynamics of earth-
quakes and seismic hazards required to engineer safer build-
ings in southern California (Cui et al., 2013). These
simulations are being pushed to higher and higher maximum
frequencies in efforts to meet the requirements of structural
and geotechnical engineers for broadband estimates of input
motion under diverse conditions on source and receiver, re-
quiring stability up to a very large number of timesteps in a
realistic 3D heterogeneous velocity model. Here, we intro-
duce a new interface between the coarse and fine meshes
(wavefield estimation using a discontinuous mesh interface
[WEDMI]), and document the method for accuracy and sta-
bility in a series of benchmarks. These verification tests in-
clude a simple homogeneous model with a point source, a
velocity model with a sharp contrast, and the Southern Cal-
ifornia Earthquake Center (SCEC) Community Velocity
Model (CVM) v.4, for both point and extended sources.

Implementation of Discontinuous Mesh into AWP
(AWP-DM)

AWP simulates 3D seismic wave propagation using the
governing equations (velocity and stress system)
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in which v is the particle velocity vector, σ is the symmetric
stress tensor, λ and μ are the Lamé coefficients, ρ is the den-

sity, δij is the Kronecker delta, and i or j � 1; 2; 3 denoting
the x, y, z directions. AWP solves equations (1a) and (1b)
using an explicit staggered-grid FD scheme, which has sec-
ond-order accuracy in time and fourth-order accuracy in space.
Figure 1 shows the layout of the three velocity components
and six stress components, indicating that the most straight-
forward way to implement a DM is to use a ratio of spatial
discretization between coarse (H) and fine (h) grids (H=h)
equal to an odd number. In this study, we only consider
the case of H=h � 3 to demonstrate the basic scheme and
the advantage of the DM. Figure 1 shows an example of up-
dating vx along the y direction to illustrate the DM algorithm
in our FD method. Although the FD update for vx requires the
surrounding stress components at��1=2�h and��3=2�h, the
DM skips the nearest stress components and uses values at
��3=2�h and at ��9=2�h instead.

A critical part of the DM is the overlap zone at the grid
interface between the (shallow) fine and (deep) coarse regions,
across which the particle velocity and stress tensor are
required to be exchanged to guarantee the continuity of the
seismic wavefield. Both transmissions of wavefield informa-
tion from the coarse to fine grid and from the fine to coarse
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Figure 1. Layout of velocity and stress components for the
fourth-order staggered-grid anelastic wave propagation (AWP) fi-
nite-difference (FD) method. Updating vx at the pivot point requires
σii (σxx, σyy, and σzz) at (−3h=2, 0, 0), (−h=2, 0, 0), (h=2, 0, 0), and
(3h=2, 0, 0), σxy at (0, −3h=2, 0), (0, −h=2, 0), (0, h=2, 0), and
(0, −3h=2, 0), σxz at (0, 0, −3h=2), (0, 0, −h=2), (0, 0, h=2),
and (0, 0, 3h=2). A discontinuous mesh (DM) method with a ratio
of grid spacing (H=h) of three skips the nearest stress components at
(−h=2, 0, 0), (h=2, 0, 0), (0, −h=2, 0), (0, h=2, 0), (0, 0, −h=2), and
(0, 0, h=2) and uses values at (−3h=2, 0, 0), (3h=2, 0, 0), (0, −3h=2,
0), (0, 3h=2, 0), (0, 0, −3h=2), and (0, 0, 3h=2) to update vx at
(0, 0, 0) instead. The two shaded patches belong to two parallel
XZ planes containing different wavefield components described in de-
tail in Figure 2 (right and left, respectively). The color version of this
figure is available only in the electronic edition.
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grid need careful analysis. Regarding the first direction, some
velocity and stress nodes adjacent to the grid interface in the
upper fine layer cannot be updated by the fourth-order FD op-
erators, due to missing grid points from the lower coarse re-
gion. To update the wavefield at these points, modified FD
operators and other numerical methods are required. For ex-
ample, Aoi and Fujiwara (1999) and Kristek et al. (2010) used
interpolation and second-order FDs in slightly different imple-
mentations. Our approach is similar to that by Kristek et al.
(2010), using interpolation and second-order FDs to update
the wavefield at the missing coarse grid points (see Fig. 2).

To reproduce this method conveniently, we provide the
order of calculations at every timestep as follows (see Fig. 2
for region labels).

Velocity field update:

1. fourth-order velocities update in the coarser region (C1),
2. fourth-order velocities update in the finer region (F1),
3. second-order velocities update in the finer region (F2),
4. free surface calculation,
5. interpolation of velocities in the finer region (F3), and
6. downsampling of velocities in the coarser region (C2).

Stress field update:

1. fourth-order stresses update in the coarser region (C1),

2. fourth-order stresses update in the finer region (F1),
3. second-order stresses update in the finer region (F2),
4. interpolation of stresses in the finer region (F3),
5. downsampling of stresses in the coarser region (C2), and
6. apply source.

To transmit the seismic waves from the fine to coarse
grids, a downsampling scheme is needed. The most straight-
forward procedure (Kang and Baag, 2004b) is to simply insert
the wavefield from the fine grid (filled symbols in Fig. 2) into
the equivalent grid points in the coarse grids (open symbols).
However, this method has proven unstable, due to the direct
transfer of more high-frequency detailed signals present in the
fine grid into the coarse grid with insufficient resolution to
stably handle this information. Such instability often materi-
alizes after many timesteps in the wave propagation simula-
tions. To stabilize the method, Hayashi et al. (2001) proposed
using an averaging or weighting function on the wavefield in-
formation from the finer grids in the DM overlap zone, before
transfer to the coarse grid. Kristek et al. (2010) and Zhang
et al. (2013) filtered the velocities and stress tensors from the
finer grids in the overlap zone by Lanczos (Duchon, 1979) and
Gaussian downsampling schemes, respectively, before trans-
ferring the wavefield to the coarse grids. The necessity for in-
terpolation is limited to a single horizontal plane in the overlap
zone, and we choose the layer of the staggered grid that con-
tains the least number of variables in need for interpolation
(σxz, vz, and σyz) to minimize the associated numerical error
(similar to that used in Kristek et al., 2010).

However, the proposed downsampling filters have not
completely eliminated the stability issues for heterogeneous
structure between the two grids (S. Aoi, written comm., 2016),
in particular when a material interface crosses the boundary be-
tween the fine and coarse grids in other than a perpendicular
direction (J. Kristek, written comm., 2016). We also note that
Zhang et al. (2013) (3D collocated FD grid) and O. Rojas (un-
published report, see Data and Resources) both discovered that
the Lanczos downsampling filter does not guarantee a stable
simulation for their FD schemes. We introduce an alternative
downsampling scheme, WEDMI, that gives stable solutions
in a wide range of tests (though we found some exceptions that
we discuss later) and may provide some computational advan-
tages. Let the linear interpolation be expressed as

EQ-TARGET;temp:intralink-;df1;313;223u � W × U; �2�
in whichU is the field value on the coarse grid, u is the missing
point on the fine grid, and W is the interpolation operator ma-
trix. In previous studies, equation (2) is implemented by sec-
ond-order (bilinear) (Kristek et al., 2010) or third-order
(trilinear) (Zhang et al., 2013) matrices, which corresponds
to 2D horizontal (the x–y plane) and 3D interpolation, respec-
tively. Likewise, we have

EQ-TARGET;temp:intralink-;df2;313;114U′ � M × u′; �3�
in which u′ is the field value in the fine grid region, U′ is
located in the coarse grid, and M is the downsampling filter
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Figure 2. Distribution of velocity and stress components on XZ
planes in the overlap zone between the fine and coarse meshes. The
left and right planes correspond to the rear and front patches indi-
cated in Figure 1. Filled and open symbols represent components in
the fine and coarse grids area, respectively. In the overlap zone
within fine mesh area, the filled circles F3 depict grid points where
the wavefield is interpolated, filled circles F2 when the wavefield is
updated by second-order FD, and filled circles F1 when the FD up-
date is fourth-order accurate. In the overlap zone within the coarse
mesh area, open circles C2 depict wavefield components down-
sampled from the fine grid components, and open circles C1
represent components updated by fourth-order FD. The color
version of this figure is available only in the electronic edition.
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(Kristek et al., 2010; Zhang et al., 2013). For WEDMI,
we set M � �h=H�WT , the normalized transpose of the inter-
polation operator matrix. Furthermore, in our scheme, we use
bilinear interpolation to improve computational efficiency and
allow for better scalability during future parallelization of the
method. The matrix expression of bilinear interpolation is as
follows:

EQ-TARGET;temp:intralink-;df3;55;649ui;j �
X
I

X
J

WiIUI;JWT
Jj; �4�

in which (i; j) and (I; J) are the spatial indices on the 2D fine
and coarse grids, respectively. In the case of 1D interpolation
with H=h � 3, W can be described as
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Correspondingly, we can extend WEDMI to 2D
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in which u′i;j depicts the value in the fine grid,U
′

I;J is located in
the coarse grid, and the summation is applied on all wavefield
terms in the fine grid indexed as (i; j). For H=h � 3 used here
and using a 5 × 5-point-long filter, we get
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Equation (7) expresses an average of u at �i; j�, using the sur-
rounding 5 × 5 nodes (2D) with identical positions but different
indices of U′

I;J and u
′−
i;j. This approach has the property that the

downsampling method from the fine to coarse grids is related to
the interpolation from the coarse to fine grids by its matrix trans-
pose operator. At the expense of losing this property, equa-
tion (7) can be generalized to a filter of N × N points as
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in which N can be an arbitrary positive odd number. We note
that, instead of using 13 × 13 fine-grid values as in the Lanc-
zos and Gaussian filter implementations (withH=h � 3, Kris-
tek et al., 2010; Zhang et al., 2013), bilinear interpolation as
used in WEDMI can be formulated to use fewer points for
downsampling. The lower number of points makes for a com-

putationally more efficient method, easier to handle near the
computational domain boundaries and less complicated for
parallelization using Message Passing Interface. In the
following four sections, we test WEDMI for accuracy and
stability using different filter lengths. We also include the gen-
eralized equations for nth-order interpolation in m dimen-
sions, as well as the corresponding downsampling filter in
the Appendix.

The use of a DM requires additional scrutiny when using
absorbing boundary condition (ABC) at the edges of the
computational grid to limit artificial reflections. Here, we test
WEDMI using ABCs or the sponge zones by Cerjan et al.
(1985) implemented in AWP. Although the other types of
ABCs have been shown to be more efficient, they can suffer
from stability problems (e.g., some implementations of
perfectly matched layers; see e.g., Festa et al., 2005;
Komatitsch and Martin, 2007), which may exacerbate
numerical issues related to the DM. We align the sponge
zones in the two grids using a physical width in the fine grid
that is the same as that in the coarser grid.

Accuracy of AWP-DM with WEDMI

To verify the accuracy of AWP-DM with WEDMI (sim-
plified as AWP-DM because all our tests have been done with
the WEDMI method implemented), we use three scenarios:
(1) a homogeneous half-space model with a point source, a
subsection of the 3D Los Angeles (LA) basin model (SCEC
CVM-S4) with both a point and an extended source (all the
parameters of these scenarios are listed in Table 1). Our bench-
marks of AWP-DM are compared to those by the original
version of AWP using a uniform (fine) mesh, which has been
thoroughly verified for both elastic and anelastic cases (Day
et al., 2001, 2003, 2005, 2008; Withers et al., 2015). An
explicit horizontal stress-free free surface boundary condition
is applied at the top of the model (Gottschämmer and Olsen,
2001). For our following tests, we used WEDMI with a 5-
point downsampling filter, because the difference in accuracy
between the different filter lengths is negligible (see Ⓔ
Fig. S2, available in the electronic supplement to this article).

A Homogeneous Half-Space Model with a Point
Source

We first test AWP-DM in a homogeneous half-space
model (parameters are listed in the Homogeneous Model col-
umn in Table 1). We place the grid interface at a depth of
11,250 m, above which the spatial grid size (h) is 75 m,
and below which we use 225 m (H). The P-wave velocity,
S-wave velocity, and density are 2500 m=s, 1500 m=s, and
2300 kg=m3, respectively. For both the fine- and coarse-grid
regions, we sample the S wavelength by at least five nodes.
The sponge zones are 20 and 60 grid points thick in the
coarse and fine grids, respectively. The point source is cen-
tered in the model, 18,000 m below the free surface. We ap-
ply a double-couple source with strike 0°, dip 90°, and rake
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180° (right-lateral strike-slip mechanism), using a Gaussian
wavelet with a maximum frequency of 1 Hz.

We compare the ground motion at 17 receivers spaced
1500 m apart and aligned along the x direction on the free
surface (see Fig. 3) from AWP-DM to that obtained from
AWP with uniform (fine) spatial discretization (h). The
two solutions are nearly identical to the naked eye in both
phase and amplitude, including a close-up of the fifth station
(Fig. 4), with an average cross-correlation coefficient be-
tween simulated waveforms from AWP-DM and the uniform
fine grid over all stations of 99.2%.

3D SCEC CVM (Los Angeles Basin) with Point and
Extended Fault Sources

Here, we apply our DM scheme to a much more com-
plex model, namely a subsection of the SCEC CVM-S4
(Magistrale et al., 2000; Kohler et al., 2003) including the
LA basin, as shown in Figure 5 and the parameters listed
in the 3D LA Model-1 column in Table 1. The LA basin
is a sediment-filled and complex-shaped structure with a
large variation in seismic velocities between shallow sedi-
ments and deep crystalline-basement rock. More than 10 mil-
lion people live in the greater LA area where a modern
metropolitan infrastructure leads to a high risk in a region
with large seismic hazards. For our tests, we limit the mini-
mum VS to 400 m=s in the near surface, although lower
values are present in the CVM. The largest VS in the model
is 4500 m=s.
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Figure 3. Surface (XY) slice of the homogeneous half-space
model depicting model dimensions and point-source location.
The model size, source location, and width of sponge zones are de-
scribed in the Homogeneous Model column in Table 1. The receiv-
ers (triangles) on the free surface are aligned along the X direction
(y � 25; 500 m) from x � 6750 m to x � 30; 750 m, with a spac-
ing of 1500 m. The color version of this figure is available only in
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For our first test, we apply the same model size, depth of
grid interface, grid spacing, point-source location and
mechanism, and location of receivers as used for the homo-
geneous half-space described above (Fig. 5). We use a Hann
wavelet with a maximum frequency of 1 Hz. The signal du-
rations are extended compared to those for the homogeneous
model, due to 3D basin and other heterogeneity effects gen-
erating reflections and scattering. The solution from the DM
is satisfactorily close to the uniform mesh solution (the aver-
age cross-correlation coefficient between waveforms from
AWP-DM and the uniform fine grid is 98.7%) even in the
zoomed-in time window (Fig. 6), with small discrepancies
at some receivers, likely caused by a combination of the
coarser discretization of the deeper layers, as well as approx-
imations in the grid overlap region by AWP-DM.

We also apply a benchmark in the 3D LA basin model
that consists of a finite-fault source that crosses the overlap
zone between fine and coarse regions. This scenario has a
more complex fault model and may be more suitable as an
indicator of numerical accuracy than the previous two mod-
els. Figure 7 and Table 1 show the model setup (the 3D LA
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Model-2 column in Table 1, 24 million grid points for a uni-
form mesh with a grid spacing of 75 m). The DM interface is
located at a depth of 3825 m, and the intersecting rectangular
fault has dimensions of 2250 m (x) × 2250 m (z), consisting
of 900 subfaults. Figure 8a shows snapshots of the σxz mo-
ment-rate component on fault, in which the kinematic source
is initiated at the center and propagates radially to the edges
with a constant rupture velocity of 3000 m=s. Figure 8b,c
shows the normalized source time function in the time and
frequency domains for all the subfaults. Figure 9 compares
the waveforms at the 17 sites (see Fig. 7) for discontinuous

and uniform mesh solutions. Despite the higher complexity
in the wavefields generated by the finite-source and 3D struc-
tural model, the difference between the fine uniform grid
and DM solutions are visually negligible (average cross-
correlation coefficient of 98.3%). In summary, our three veri-
fication tests, a homogeneous half-space, and 3D LA basin
model with point and extended sources, all demonstrate great
accuracy of our AWP-DM.

Stability Analysis of AWP-DM

As discussed above, stability appears to be a pervasive
problem for discontinuous staggered-grid mesh configura-
tions for highly complex media. In this section, we explore
the stability conditions for AWP-DM with significantly ex-
tended simulation time (from 270,000 to 1,000,000 time-
steps, depending on platform limits) in models of varying
complexity and using different downsampling filter lengths.
First, we use the 3D LA basin model (the 3D LA Model-3
column in Table 1), with the source located at the center of
the model and 8775 m below the free surface. The DM inter-
face is located at a depth of 4275 m, resulting in the depth of
19 grid points for coarse grids. Figure 10 compares solutions
from AWP-DM with the WEDMI downsampling (5-point
filter) and to the solution with no filter (directly inserting
the wavefield from the fine grid into the equivalent grid
points in the coarse grid). The solution without a downsam-
pling filter shows instability starting at about 670 s (134,000
steps), in agreement with the results by Zhang et al. (2013).
In comparison, our solution using the WEDMI technique
shows stable results up to 1400s (280,000 steps), a range that
exceeds current large-scale simulation models. The length of
the simulation was constrained by computational limitation
and not by issues related to stability.

We use a slightly smaller subset from the 3D LA basin
model (see the 3D LA Basin-4 column in Table 1) to extend

the simulation time, with the same vertical
location of the DM interface as for the
larger 3D model. Similarly, the source is
located in the center of the model, with
the same vertical distance below the DM
grid interface as for the large 3D model.
Figure 11 (note the logarithmic axes)
shows that our AWP-DM using WEDMI
is stable up to 800,000 timesteps, beyond
the length required by most current and ex-
pected near-future high-frequency ground-
motion simulations. Again, the maximum
number of timesteps was dictated by com-
putational resources only.

To examine the influence of the fre-
quency content of the source on the stabil-
ity of AWP-DM (downsampling filter
length of 5), we use a temporal delta func-
tion with the 3D LA model-3. Ⓔ Fig-
ure S1a shows that this model is stable
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to at least 270,000 timesteps, for which the run time was dic-
tated by computational resources. An additional test with a
smaller domain size (same domain size with 3D LAmodel-2)
was stable up to 1 million timesteps (Ⓔ Fig. S1b). These
tests imply that the stability of AWP-DM with WEDMI is
insensitive to the frequency content of the seismic source.

Finally, we challenge the AWP-DM method with an ex-
treme test case: a strong-contrast basin model (Fig. 12 and
the Large Contrast Basin Model column in Table 1), which
has low-velocity sediments (VP 1500 m=s, VS 500 m=s, and
density 1900 kg=m3) located above higher-velocity bedrock
(VP 2500 m=s, VS 1500 m=s, and density 2300 kg=m3). The
presence of the abrupt (factor of 3) contrast of VS along x, y,
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and z directions inside the DM overlap zone can be consid-
ered an extreme indicator of stability because this model can
trap much more slowly decaying energy, compared to the
homogeneous and realistic 3D LA basin models. We tested
the extreme model using WEDMI with downsampling filter
lengths of 5, 7, 9, 11, and 13 points, as well as using the
Lanczos filter (filter length of 13, Lanczos 13p) (Ⓔ Fig. S2

and Fig. 13), at a receiver located at
(9000 m, 9000 m) on the surface. In this
test, different downsampling filter imple-
mentations show comparable accuracy
(Ⓔ Fig. S2) but different stability results:
WEDMI is stable to at least 1,000,000
timesteps, with downsampling filter
lengths of 7, 11, and 13 but only to
∼70;000 and ∼750;000 for downsampling
filter lengths of 5 and 9 points, respec-
tively. In comparison, Lanczos 13p is sta-
ble to ∼160;000 timesteps for the extreme
model. Another extreme scenario, with a
dipping basin bottom boundary intersect-
ing the DM overlap zone demonstrated
in Ⓔ Figure S3a, is tested as a further test
of stability. WEDMI with filter lengths of
7, 9, 11, and 13 remains stable to at least
1,000,000 timesteps, whereas WEDMI
with filter length of 5 and Lanczos 13p
are stable until around 700,000 timesteps.
These tests imply that instability is pos-
sible in models with large velocity con-
trasts inside the DM overlap zone. In

summary, our benchmarks indicate that AWP-DM is accu-
rate and stable for models in which the transitional mesh re-
gion is disjointed from very strong velocity interfaces and
otherwise can be stabilized by extending the downsampling
filter length.

Discussion

The primary incentive to develop a stable and accurate
DM FD method is to save computational resources, com-
pared to the requirements for a uniform mesh code. We ex-
pect a trade-off between the accuracy and computational cost
by means of adjusting the depth of the DM interface. The
shallower we can position the DM interface, the smaller
the region that needs to be discretized by the fine grid, with
a larger computational saving as result. On the other hand, a
shallow location of the DM interface may cause insufficient
sampling of the wavefield in the lower velocity material and
cause inaccurate results. To capture this trade-off, we per-
form a test with the 1D model shown in Figure 14a, in which
the source is located at a depth of 16,650 m below free sur-
face. The receiver is located 3181 m northeast of the source
on the surface. We correlate the simulated waveforms from
AWP-DM and uniform (fine) grid AWP for a range of depths
of the DM grid interface. Figure 14b shows the cross-corre-
lation coefficient of the first 30 s of waveforms from uniform
and discontinuous meshes, plotted against the number of
points per S wavelength in the coarse grid (points per wave-
length [ppw]) associated with the depth of the DM grid inter-
face. This figure suggests an optimal depth of the DM
interface corresponding to 7–8 ppw calculated from the
coarse grid in the overlap zone (with a correlation coefficient
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of ∼0:995), with smaller gains in accuracy at deeper loca-
tions. We note that the increase of the usual rule of thumb
for a fourth-order staggered-grid scheme of at least 5 ppw
is only required inside the DM overlap zone and is therefore
not computationally significant. Figure 14b also shows that
the depth of the interface associated with 7–8 ppw corre-
sponds to the use of about 40% of memory for the corre-
sponding (fine) uniform grid. In general, the figure can be
used to decide on the positioning of the DM interface depen-
dent on model-specific requirements for accuracy and avail-
able computational resources.

Conclusions

We implemented a DM scheme for the fourth-order ac-
curate staggered-grid velocity-stress AWP FD method, with
a ratio of the coarse-to-fine grid spacing of 3. Our method
applies bilinear interpolation and second-order FD to update
the wavefield at the grid points of the fine mesh undefined in
the coarse grid and a novel approach to downsample varia-
bles from the fine grid to the coarse grid (WEDMI). We show
that our AWP-DM scheme is accurate and stable for a num-
ber of timesteps, exceeding current ground-motion simula-
tion requirements for a homogeneous model and a 3D LA
basin velocity model using a point and extended source in-
tersecting the interface between the fine and coarse meshes.
For extreme models, for example, with a factor of 3 S-wave
velocity contrast located inside the DM overlap zone, the
WEDMI downsampling filter length should be chosen with
care, because some cases (e.g., 5- and 9-point filters) appear
to be less stable than others. In any case, WEDMI has the
potential to significantly improve the efficiency of current
(uniform mesh) FD methods, especially for simulations with
realistic 3D geological settings and near-surface low veloc-
ities. Implementation of WEDMI is expected to be straight-
forward for other FD or finite-element schemes.

Data and Resources

The Southern California Earthquake Center (SCEC)
Community Velocity Model (CVM) S4 can be downloaded
from http://scec.usc.edu/scecpedia/ (last accessed November
2016). Most data processing and visualization were done
by MATLAB (http://www.mathworks.com/products/matlab/,
last accessed November 2016). We cite an unpublished report
about the instability of a discontinuous mesh mimetic operator
finite-difference method from Otilio Rojas in 2014. He ana-
lyzes instability of his discontinuous mesh method and found
that the multiple choices of interpolations and downsampling
filters perform differently.
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Appendix

Here we provide the generalized equations for our pro-
posed interpolation and corresponding downsampling meth-
ods. The 1D nth-order interpolation can be expressed as

EQ-TARGET;temp:intralink-;dfa1;55;305f�x� �
Xn
i�1

a�xi�f�xi� � A1×n × Fn×1; �A1�

in which f�x� is the function to be interpolated positioned at
x, and f�xi� and a�xi� are the known nodal values of the
function and weight coefficient at each value of xi. The in-
terpolated function is the summation of all the products of
weight coefficients and nodal values over the n points.
The weight coefficient at xi is also dependent on the relative

distance between x and xi. The rightmost side of equa-
tion (A1) expresses the interpolation in matrix format.

Next, we extend this to m-dimensional nth-order inter-
polation; the equation can be formulated as

EQ-TARGET;temp:intralink-;dfa2;313;685f�~x� �
Xn
i1�1

Xn
i2�1

� � �
Xn
im�1

a�xi1;i2;���im�f�xi1;i2;���im�

�
Xn
i1�1

Xn
i2�1

� � �
Xn
im�1

Ym
j�1

a�xj�f�xi1;i2;���im�; �A2�

in which ~x is an arbitrary position in an m-dimensional Hil-
bert space, and i1…im correspond to each point in one of the
dimensions. The matrix expression of interpolating n2 points
(1 point assumed in equations A1 and A2) out of n1 points in
each dimension is

EQ-TARGET;temp:intralink-;dfa3;313;539

fnm
2
� An2×n1 × Fnm

1
× �An1×n2 : An1×n2 : … : An1×n2�

� An2×n1Fnm
1
Bn�m−1�

1
×n�m−1�

2

; �A3�

in which the subscript of each term describes the dimension
of the matrix. For example, fnm

2
is a matrix in which the di-

mension is n2 × n2 � � � × n2 (m multipliers in total).
Similarly, the matrix form of downsampling into n1

points from n2 points is

EQ-TARGET;temp:intralink-;dfa4;313;424Fnm
1
�

�
n1
n2

�
m
�An2×n1�Tfnm2 �Bn�m−1�

1
×n�m−1�

2

�T: �A4�

In both the interpolation and downsampling equations (A3)
and (A4), Fnm

1
and fnm

2
denote field values in the coarser and

finer grids, respectively.
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