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ABSTRACT
A review of a collection of theoretical source spectral models revealed: (1) Despite the well-
known variation in predicting static stress drop Δσs from the seismic moment and corner
frequency, all models, especially the three conventional models, suggest that earthquakes
radiate about half of the available strain energy into the surroundingmedium. This similarity
justifies a less model-dependent approach to estimate Δσs, though estimates for natural
earthquakes rely on apparent seismic radiation efficiency (� 2σa=Δσs; σa is apparent stress
of an earthquake). (2) When one attempts to use Δσs and spectral models to make predic-
tions, such as apparent stress σa, there is a model-dependent discrepancy between the σa
inferred from theoretical energy partitioning and the σa predicted using spherical mean cor-
ner frequency. Their ratio cp varies significantly from 1.0 for the Brune (1970, 1971) model to
6.38 for the Madariaga (1976) model. If one uses spectral models to predict the ground
motion, cp must be considered. (3) We infer that the constancy of the “stress parameter”
(gΔσ) found in engineering seismology (e.g., Boore, 1983; Atkinson and Beresnev, 1998) is
similar to having constant apparent stress, σa (e.g., Ide and Beroza, 2001). The observation
thatgΔσ is generally larger than the average static stress drop Δσs for global M > 5.5 shallow
crustal earthquakes in active tectonic regions implies that these earthquakes radiate, on
average, more seismic energy than predicted from the conventional dynamic crack models.

KEY POINTS
• Δσs estimated using the conventional M0 & f c methods

strongly depend on the particular theoretical spectral model.
• Model-dependent variability of spectral estimates of Δσs

can be largely reconciled using radiated energy ER.
• Robust stress drop estimates are important for seismologi-

cal studies and engineering applications.

INTRODUCTION
Static stress drop, which represents the stress difference across
the fault surface before and after an earthquake, is an impor-
tant physical source parameter and has been studied exten-
sively in seismology. The static stress drop of an earthquake
often varies locally over its fault surface. Because of the limited
resolution of geophysical data, only the spatial average over the
coseismic rupture surface can be accessed in most circumstan-
ces. Many variants of the average stress drop definition have
been introduced in the literature (e.g., Noda et al., 2013). Using
them interchangeably is often a source of confusion. In this
note, we use Δτ�ξ� to represent the static stress drop at one
point ξ on the fault surface and specifically refer to Δσs as
the average static stress drop defined as

EQ-TARGET;temp:intralink-;df1;41;81Δσs � CAM0=A
3
2; �1�

in which A represents the coseismic rupture area, andM0 is the
seismic moment. CA is a constant related to the shape of the
rupture plane (Aki, 1972; Noda et al., 2013); it varies less than
20% when the aspect ratio of the rupture plane is smaller than
four (Noda et al., 2013). This definition of Δσs is also used in
Brune’s (1970) spectral method. Using equation (1), Kanamori
and Anderson (1975) reported Δσs of 3 MPa for the mean
average static stress drop for interplate and 10 MPa for intra-
plate earthquakes. Their result has been affirmed by many
later studies (e.g., Kanamori, 1978; Wells and Coppersmith,
1994; Hanks and Bakun, 2008; Irikura and Miyake, 2010;
Leonard, 2010; Murotani et al., 2015). However, the peak static
stress drop on the fault surface, that is, the maximum of Δτ�ξ�,
can be significantly larger (e.g., Brune, 1970; Bouchon, 1997;
Ripperger and Mai, 2004; Irikura and Miyake, 2010; Brown
et al., 2015).
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Because of the challenge in determining rupture area A,
most estimates of Δσs, particularly for small and even moder-
ate-magnitude earthquakes, have been made using the corner
frequency f c of the observed source spectra (e.g., Ide et al.,
2003; Shearer et al., 2006; Mayeda et al., 2007; Oth et al.,
2010; Shearer et al., 2019; Abercrombie et al., 2021; Shearer
and Abercrombie, 2021), following the seminal work of
Brune (1970). We hereafter refer to this stress drop estimate as
Δσ f c . However, depending on which theoretical model is used
(e.g., Brune, 1970; Sato and Hirasawa, 1973; Madariaga, 1976;
Kaneko and Shearer, 2014; Wang and Day, 2017), the inferred
stress estimate for the same source spectrum can differ by a
factor of 5.56. A numerical agreement of stress drop Δσ f c
may imply a large discrepancy. For instance, Allmann and
Shearer (2009) conducted a global survey for stress drop of
Mw > 5:5 earthquakes using the observed P-wave spectra from
seismograms at teleseismic distances. They reported a median
stress drop of 4.6 MPa using Madariaga’s (1976) relation
(assuming a shear-wavespeed of 3500 m/s at the source
region). Baltay and Hanks (2014) showed that the mean peak
ground accelerations (PGAs) and mean peak ground velocities
(PGVs) for stations close to the faults for shallow crustal earth-
quakes (SCEs) in tectonically active regions can be matched
with a stress drop of 4.64 MPa in a point source stochastic pro-
cedure and Brune’s spectral model (Brune, 1970). Their stress
drop is 25 MPa if one uses Madariaga’s relation instead of
Brune’s. This difference begs the question: How does one rec-
oncile such a big discrepancy? Are the near- and far-field radi-
ation so different, or is something missed in the earlier
interpretation?

The stress drop used during stochastic ground motion sim-
ulations has often been referred to as “stress parameter” (here-
after referred to fΔσ; Boore, 1983) in the bulk of engineering
seismology literature. The discrepancy between values of fΔσ
and Δσs has been reported (e.g., Hanks and McGuire, 1981;
Boore, 1983). It led Atkinson and Beresnev (1998) to a well-
known letter entitled “do not call it stress drop”, in which they
argued that fΔσ may bear no relationship to real stresses on the
fault surface. What does this important parameter in engineer-
ing seismology mean? Cotton et al. (2013) pointed out that the
between-event variation of fΔσ inferred from various ground
motion prediction equations is much smaller than the
between-event variation of stress drop estimated using source
spectra (e.g., Allmann and Shearer, 2009). Understanding the
physical meaning of fΔσ could allow one to take advantage of
its well-behaved magnitude independence that was recognized
four decades ago (Hanks and McGuire, 1981).

In this study, we attempt to explore the theoretical and
empirical relations among Δσs, Δσ f c ; and fΔσ. Considering
the notable uncertainties related to various stress measure-
ments (e.g., Leonard, 2010; Cotton et al., 2013), in this prelimi-
nary work, we further restrict our attention to the relations
between their means for earthquakes with the same magnitude.

Because the measurements of Δσs (defined as equation 1) are
only available for a few small or moderate earthquakes (e.g.,
Dreger et al., 2007), the observational results of large
(Mw > 5:5) earthquakes in literature are used. Our effort
can be further divided into the following three parts.

We first reexamine the original articles of several theoretical
source spectral models. One major feature stands out. Despite
the large difference (up to a factor of 5.56) in stress drop esti-
mates from different spectral models, there is a remarkable
consistency in seismic radiation efficiency ηR (Brune, 1970;
Madariaga, 1976; Kaneko and Shearer, 2014; Wang and
Day, 2017). All models predict that earthquakes radiate about
half of their available strain energy to the surrounding
medium. This consistency strongly suggests using seismic radi-
ated energy ER (or apparent stress σa � μ ER

M0
, μ is rigidity, Wyss

and Brune, 1968) as an anchor when comparing different spec-
tral models. We show that, in theory, how an ER-based method
for estimating stress drop is less model dependent than the
conventional methods.

Second, when researchers forward predict ground motion
using source spectral models and stress drop (e.g., Hanks and
McGuire, 1981; Boore, 1983), a point source approximation
has to be applied. We notice an interesting fact that is embedded
in nearly all source spectral models except Brune’s (1970). The
corner frequency f c that is used to solve for stress drop Δσ f c
cannot correctly predict the corresponding radiated seismic
energy ER or apparent stress σa. To conserve ER under such
a point source approximation, a ER-based corner frequency
f ER
c for a given spectral model is introduced. Taking this issue
into consideration, the “apparent” inconsistency between the
aforementioned two well-known studies of global earthquakes
(Allmann and Shearer, 2009; Baltay and Hanks, 2014) can be
partially explained. In the Discussion section we further outline
why the stress parameter fΔσ can be viewed as another form of
apparent stress σa under some limitations.

Third, how well an ER-based stress drop ΔσER
approximates

static stress drop Δσs depends on apparent seismic radiation
efficiency ηAR (� 2σa=Δσs, e.g., Beeler et al., 2003). We discuss
various source parameters that affect the value of ηAR and con-
clude that it is difficult to theoretically predict the range of ηAR .
However, extensive measurements of Δσs and σa forMw > 5:5
earthquakes are available for which the variability of Δσs and
σa is much less compared to similar measurements for Mw <
5:5 earthquakes (see fig. 1 in Abercrombie, 2021). Especially,
the measurements of Δσs and σa for many Mw > 5:5 earth-
quakes were constrained using observations other than the cor-
ner frequency f c (Kanamori and Anderson, 1975; Choy and
Boatwright, 1995; Leonard, 2010; Kanamori et al., 2020).
We show that the mean ΔσER is slightly larger than the mean
Δσs for these earthquakes.

This study can help us to better understand the various stress
estimates of moderate and large earthquakes in the literature,
and shed light on the absolute Δσs of small earthquakes.
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A REVIEW OF CONVENTIONAL SOURCE MODELS
In this short note, we will focus on four articles that provide
insights into the source spectra: Brune (1970), Madariaga
(1976), Kaneko and Shearer (2014), andWang and Day (2017).
The Brune model (Brune, 1970, 1971) and the Madariaga
model (Madariaga, 1976) are the most widely used source spec-
tral models in the seismological literature. The results of
Kaneko and Shearer (2014) and Wang and Day (2017)
represent recent developments in this field. All models adopted
a whole space approximation to the earth medium. Because
our attention is focused on SCEs in active tectonic regions
(Ancheta et al., 2014), we use β � 3500 m=s and
ρ � 2700 kg=m3 as S wavespeed and density at the source
region. The default rigidity μ is then 3:3 × 104 MPa.

All of these models considered rupture on a circular fault
plane and estimated the average stress drop Δσs using
Eshelby’s relation (Eshelby, 1957):

EQ-TARGET;temp:intralink-;df2;41;523Δσs �
�
7
16

�
�M0=a3�; �2�

in whichM0 is the seismic moment, and a is the radius. This is
equivalent to equation (1) with CA � 2:44. When spatially
heterogeneous slip and stress drop on a fault are known, it
is useful to estimate the energy-based (or slip weighted) aver-
age static stress drop ΔσEs (Noda et al., 2013):

EQ-TARGET;temp:intralink-;df3;41;407ΔσEs �
R
A Δτ�ξ� ·D�ξ�dAR

A D�ξ�dA ; �3�

where Δτ�ξ� and D�ξ� represent the static stress drop and slip
at a point ξ on the fault surface in vectors. ΔσEs can be esti-
mated with available finite fault slip models (e.g., Shao et al.,
2012; Ye et al., 2016). However, it is sensitive to small-scale slip
or stress variations, and only its lowest bound can be con-
strained with geophysical observations (Adams et al., 2019).
Kikuchi and Fukao (1988) and Noda et al. (2013) proved
ΔσEs ≥ Δσs. These two measures of average stress drop are
equal when Δτ�ξ� is a constant on the fault.

Brune (1970) introduced an idealized representation for the
earthquake source spectrum as

EQ-TARGET;temp:intralink-;df4;41;212Ω0�f � � M0=
�
1�

�
f
f c

�
γ
�
; �4�

in which f c is corner frequency, and γ � 2 is the high-
frequency falloff rate. The asymptotic amplitude of this
spectrum is proportional to the seismic momentM0 at low fre-
quency and decays as f −2 at high frequency. Brune (1970) also
introduced an ad hoc time-domain source time function,
Ω0�t� � M0ω

2
c te−ωct , ωc � 2πf c and t >0, which has the same

spectral shape as equation (4). The duration ofΩ0�t� is infinite,
but 95% of its seismic moment (M0) occurs in the interval

�0; 0:755=f c�. Brune (1970) modeled an earthquake as a circular
fault with simultaneous, constant stress relaxation over the
entire fault, that is, infinite rupture velocity. Adopting a point
source approximation and an argument analogous to the con-
servation of total “seismic radiated energy,” Brune (1970)
derived a relation between f c and the source radius a, and sub-
sequently tectonic effective stress (dynamic stress drop) Δσd :

EQ-TARGET;temp:intralink-;df5a;308;653f c � k
β

a
; �5a�

EQ-TARGET;temp:intralink-;df5b;308;610Δσd �
7M0

16
�f c=�kβ��3; �5b�

in which β is the S wave velocity in the source region and
k ∼ 0:372. Brune (1970) only considered S-wave radiation
and assumed implicitly Δσd � Δσs so that he could use equa-
tion (2) to link Δσd with M0. In the following discussion, we
refer to the methods that use equations (5a) and (5b) or its
variants to estimate Δσs from seismic moment and corner fre-
quency asM0 & f c methods and the corresponding solutions of
stress drop as Δσ f c . Specifically, we refer to Δσ f c estimated
using Brune’s k value of 0.372 as Brune stress drop ΔσBf c :

The rupture front of an earthquake propagates with a finite
rupture velocity VR. Madariaga (1976) studied a quasi-
dynamic (stress relaxation but rupture velocity prescribed) cir-
cular crack that radially expands with VR � 0:9β. He found
that the observed corner frequencies vary with the takeoff
angles relative to the fault plane (referred as azimuth in
Madariaga, 1976). The corner frequency is “inversely propor-
tional to the width of the far-field displacement pulse, which, in
turn, is related to the time lag between the stopping phases”
(Madariaga, 1976). Madariaga (1976) attempted to connect
the spherical mean of corner frequencies, f̄ c with

β
a as in equa-

tions (5a) and (5b). He obtained a k value of 0.21 for S-wave
spectra. We hereafter refer toΔσ f c estimated using Madariaga’s
k value as Madariaga stress drop ΔσMf c . As shown in equa-
tions (5a) and (5b), Δσ f c is proportional to k−3. The difference
in k value between Brune (1970) and Madariaga (1976) leads to
a factor of 5.56 difference between ΔσBf c and ΔσMf c (Table 1).
ΔσMf c is a measure of Δσs rather than Δσd . Madariaga (1976)
noted that when VR � 0:9β, Δσs � 1:2σd , that is, stress
overshoot.

Kaneko and Shearer (2014) conducted quasi-dynamic
calculations similar to Madariaga (1976) but considered
cohesive-zone models, that is, a circularly expanding stress
relaxation with a small-scale yielding limit. Kaneko and
Shearer (2014) obtained k = 0.26 for S-wave spectra when
VR � 0:9β. This k is 24% greater than Madariaga’s k but
still smaller than Brune’s. We refer to the Δσ f c estimated
using this k value as K&S stress drop ΔσKSf c . Δσ

KS
f c

is 2.9 times
larger than ΔσBf c (Table 1). Again ΔσKSf c is an estimate of
Δσs. Kaneko and Shearer (2015) reported that when
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VR � 0:9β, Δσs � 1:26Δσd , slightly larger stress overshoot
than Madariaga’s (1976).

Wang and Day (2017) simulated four simplified spontane-
ously propagating dynamic rupture models. All the four mod-
els are under the same background stress conditions—a
statically strong but dynamically weak fault. Depending on
the value of the weakening slip velocity, a parameter of the rate
and state friction law incorporating a strong velocity weaken-
ing mechanism (e.g., flash heating and thermal pressurization),
the models are either expanding crack or self-healing pulse-like
ruptures (see Wang and Day, 2017 for details). Differing from
the numerical studies of Madariaga (1976) and Kaneko and
Shearer (2014), the rupture velocity in the Wang and Day
(2017) simulations is determined as part of the solution rather
than being preassigned. Wang and Day (2017) noted that
(1) the rupture velocity has to be slightly different in inplane
and antiplane directions (Day, 1982); and (2) static stress drop
Δτ�ξ� is notably heterogeneous, especially for the slip-pulse
models (see figs. 5, 6, and 7 in Wang and Day, 2017). Their
calculation for a spontaneously expanding crack (EC) with
VR � �0:84 − 0:88�β (EC, Table 1) resulted in a k value of
0.27, similar to Kaneko and Shearer (2014). A stress overshoot
was also observed, Δσs ∼ 1:12Δσd (Wang and Day, 2017).
Wang and Day (2017) presented three representative self-heal-
ing pulse-like modes: growing pulse (GP), steady-state pulse
(SS), and arresting pulse (AP). Here we consider only GP
and SS models. The AP simulation stops spontaneously before
the rupture front reaches the imposed velocity-strengthening
barrier, resulting in an elliptical rupture surface (Wang and
Day, 2017). The k inferred from these two self-healing
pulse-like models is 0.36 for GP and 0.31 for SS, closer to
Brune’s k. We refer to the Δσ f c estimated using these two k
values as ΔσWD

f c
, which is 1.10–1.73 times larger than ΔσBf c

(Table 1). Because the faulting models of Wang and Day

(2017) depend on background stress conditions and the
parameters of rate and state friction law (see fig. 17 in
Wang and Day, 2017), it is not completely clear whether
the results for k are magnitude independent, that is, self-sim-
ilar, as the crack models.

Regardless of the large discrepancy in the inferred Δσ f c
among the four crack models for a given pair of corner fre-
quency f c and seismic momentM0 (Table 1), all of these mod-
els agree in their estimate of seismic radiation efficiency ηR,
which is the ratio of seismic radiated energy ER and the avail-
able strain energy ΔW (e.g., Husseini and Randall, 1976;
Venkataraman and Kanamori, 2004):

EQ-TARGET;temp:intralink-;df6a;320;341ΔW � 1
2

Z
Δτ�ξ�D�ξ�dA � ER �

Z
G�ξ�dA; �6a�

EQ-TARGET;temp:intralink-;df6b;320;297ηR � ER=ΔW; �6b�

in which D�ξ�, Δτ�ξ�, and G�ξ� are displacement, static stress
drop, and fracture energy density, respectively, at a point ξ on
the fault surface. ER � Es

R � EP
R represents the seismic radiated

energy carried by S waves and P waves, respectively. Because
EP
R is much smaller than Es

R (e.g., Kaneko and Shearer, 2014;
Wang and Day, 2017), we ignore EP

R in the following discus-
sions. From equation (2), we have ΔW � M0ΔσEs =2μ (Shao
et al., 2012; Noda et al., 2013; Wang and Day, 2017).
Equation (6b) can be rewritten as

EQ-TARGET;temp:intralink-;df7;320;146σa �
1
2

�
ΔσEs
Δσs

�
ηRΔσs; �7�

in which σa � μ ER
M0

(μ is rigidity) is apparent stress (Wyss and
Brune, 1968). Adopting a point source approximation and a
source spectrum defined in equation (4), σa of an earthquake

TABLE 1
Comparisons of Dynamic Circular Crack and Slip Pulse Models

W&D Models

Parameters Brune Model Madariaga Model K&S Model EC GP SS

VR�×β� ∞ 0.9 0.9 0.84–0.88 0.81–0.85 0.74–0.78
ks 0.372 0.21 0.26 0.27 0.36 0.31
�ks�−3=19:425 1.0 5.56 2.93 2.62 1.10 1.73
ηR 0.466* 0.533 0.48 0.40 0.65 0.46
ΔσEs =Δσs 1 1 1 1 1.31 1.39
ηAR 0.466 0.533 0.48 0.40 0.85 0.64
Δσs �if σa � 1 MPa� 4.29 3.75 4.17 5.0 2.35 (3.08)† 3.13 (4.35)†

Correction factor �cp� 1 6.38 3.03 2.25 2.02 (1.54)† 2.38 (1.71)†

f ERc �×f̄ c� 1 1.85 1.45 1.31 1.26 (1.16)† 1.33 (1.20)†

kER 0.372 0.390 0.377 0.354 0.454 0.412

AP, arresting pulse (Wang and Day, 2017); EC, expanding crack; GP, growing pulse; K&S, Kaneko and Shearer (2014, 2015); SS, steady-state pulse; W&D, Wang and Day (2017).
*Brune model only considered the S-wave radiation (Brune, 1970).
†Value inside the parentheses is the estimate by further assuming ΔσEs � Δσs.
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can also be calculated using f c and M0 (e.g., Andrews, 1986;
Madariaga, 2011):

EQ-TARGET;temp:intralink-;df8;41;718σa ≅
π2

5β3
f 3cM0; �8�

in which only Es
R is taken into account.

In his seminal work, Brune (1970, 1971) reported ηR ∼ 0:466
(only Es

R was considered; Table 1). Using equation (36) of
Madariaga (1976), we obtain ηR ∼ 0:533 for Madariaga’s model
in which VR � 0:9β (Appendix A). Kaneko and Shearer (2014)
reported ηR � 0:48 for their model with VR � 0:9β. The differ-
ence between the Madariaga and K&S estimates of ηR can be
explained by their difference in stress overshoot, that is,
Δσs=Δσd (Appendix A). The EC model of Wang and Day
(2017) is a spontaneous rupture with a rupture velocity close
to 0:9β (Table 1). Wang and Day (2017) reported ηR � 0:40
(EC, Table 1), which is correlated with its slower rupture velocity
�0:84 − 0:88�β. Nevertheless, for all the four crack models ηR is
0.470 ± 0.047, essentially a constant when we consider the uncer-
tainty of ηR measurements for individual earthquakes (e.g.,
Venkataraman and Kanamori, 2004). As ΔσEs � Δσs holds for
all the crack models, we can estimate Δσs using the relation
Δσs � �2=ηR�σa. The median of σa measurements from global
SCEs is about 1.0 MPa, for example, Ide and Beroza (2001). As
shown in Table 1, using σa � 1:0 MPa the inferred Δσs varies
between 3.75 and 5.0 MPa among the four crack models. This
variation of Δσs is much smaller than the model-dependent
variation associated with the conventional M0 & f c approaches
(Table 1).

The ηR of the GP and the SS models is 0.65 and 0.46, respec-
tively (Table 1). Both values are greater than the EC model 0.40
(Table 1). The average rupture velocity of the GP model is
∼0:83β and that of the SS model is ∼0:76β. As we discuss later,
ηR of GP and SS models is much larger than the ηR of circular or
elliptical crack models with comparable rupture velocity. The
ratio ΔσEs =Δσs is 1.31 for the GP model and 1.39 for the SS
model (Table 1)—a natural consequence of the pulse-like rup-
ture (Wang and Day, 2017). Assuming σa � 1:0 MPa, the
predicted Δσs is 2.35 MPa for the GP model and 3.12 MPa for
the SS model (Table 1). TheseΔσs are smaller than the predicted
Δσs using the crack models (Table 1). These predicted values of
Δσs are consistent with the average Δσs of SCEs (∼3 MPa, e.g.,
Somerville et al., 1999; Hanks, 2002; Leonard, 2010).

A CORRECTION FACTOR cp FOR POINT SOURCE
SPECTRAL MODELS
If the static stress drop Δσs and seismic momentM0 of an earth-
quake are known, the apparent stress σa can be estimated using a
selected source spectral model. There are two possible
approaches:

1. One can directly use the theoretical seismic radiation effi-
ciency ηR of the selected model (Table 1). The predicted σa
is ΔσsηR=2.

2. One can use Δσs,M0, and k of the spectral model to predict
the spherical mean corner frequency f̄ c using equation (5b):

EQ-TARGET;temp:intralink-;df9;308;718f̄ c � ��16Δσs�=�7M0��1=3kβ: �9�

Using equation (8) with M0 and f̄ c one can determine σa.
This approach has been used in the engineering seismology
community to estimate the source spectrum for strong ground
motion simulation (e.g., Boore, 1983), though the k of Brune’s
model is generally used.

However, the apparent stress σa determined by these two
approaches is different for some spectral models. Here, we
introduce a correction factor cp, which is the ratio of the σa
obtained from these two approaches:

EQ-TARGET;temp:intralink-;df10;308;549cp � �ΔσsηR=2�=��π2=5β3�f̄ 3cM0� � �35ηR�=�32π2k3�; �10�

in which cp is a function of model-dependent parameters ηR
and k. Among the crack models in Table 1, cp varies from 1.0
for Brune’s model to 6.38 for Madariaga’s model. The cp of the
two slip pulse models of Wang and Day (2017) are roughly the
same: 2.02 for the EP model and 2.38 for the SS model. Because
σa � μ ER

M0
, a source spectral model with cp > 1 means that

when one uses this model to predict the seismic radiated
energy ER through the second approach, the predicted ER is
a factor of cp smaller than the theoretical expectation.

The large cp that is associated with the conventional spectral
models such as Madariaga’s can be explained intuitively. The
dynamic crack has a finite size; approximating it as a point
source can produce artifacts. Madariaga (1976) and Kaneko
and Shearer (2014) showed that both f c and the high-fre-
quency falloff rate γ vary with the takeoff angle. Differences
in f c and γ lead to the differences in seismic radiated energy
density. Let us temporarily assume γ is 2. The energy density is
then proportional to f 3c for every takeoff angle (equation 8). Let
f̄ c be the spherical mean of f c (Madariaga, 1976; Kaneko and
Shearer, 2014; Wang and Day, 2017). Using f̄ c to estimate the
cumulative radiated seismic energy is equivalent to using the
cube of the spherical mean of f c, that is, �f̄ c�3 to approximate
the spherical mean of f 3c , that is, f

3
c . Because �f̄ c�3 ≤ f 3c holds for

any set of positive f c, the predicted total seismic radiated
energy must be underestimated. The cumulative effect, which
is a combined result of variations in f c, radiation pattern, and
falloff decay rate, is a factor as large as 6.38—a factor too large
to be ignored. When one uses Δσs and M0 to predict the seis-
mic radiated energy or high-frequency seismic radiation for
engineering applications (Hanks and McGuire, 1981; Boore,
1983), the result must be properly scaled to conserve the total
seismic radiated energy.

It should be noted that Brune (1970) considered the balance
between the total “energy” radiating from the source and the
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total “energy” passing through the surface of a sphere in the far
field. Thus, Brune (1970) used �f 3c �1=3 rather than f̄ c in equa-
tions (5a) and (5b), that is, �f 3c �1=3 � kβ=a. cp is then 1.0 for the
Brune model. We can adopt Brune’s energy balance approach
to introduce a seismic radiated energy ER-based kER for any
spectral model. kER can be represented as c1=3p k, in which k is
the original constant of a particular spectral model. As shown
in Table 1, kER ranges from 0.354 to 0.390 among the four crack
models, close to Brune’s k of 0.372. kER is 0.45 and 0.41 for GP
and SS models, respectively. The ER-based kER leads to a ER-
based corner frequency (equation 9) that needs to be used for
forward prediction when using a particular spectral model. We
refer to it as f̄ ER

c with f̄ ER
c � c1=3p f̄ c, in which f̄ c is the spherical

mean corner frequency. One can estimate stress drop Δσ f c
using f̄ ER

c and kER as the inputs of equations (5a) and (5b),
respectively. The result is same as that using f̄ c and k. But the
single corner Brune spectrum (equation 4) with f̄ ER

c as its cor-
ner frequency can correctly forward predict the total seismic
radiation energy ER.

Allmann and Shearer (2009) used the M0 & f c method to
determine the Madariaga stress drop ΔσMf c , yielding a median
ΔσMf c of 4.6 MPa for global Mw > 5:5 shallow earthquakes.
Here the ΔσMf c value has been corrected for S-wave velocity
at the source region equal to 3500 m/s. Baltay and Hanks
(2014) found that a Brune stress drop of 4.64 MPa is optimal
to explain the mean PGAs and mean PGVs for stations close to
the faults for SCEs. We can also use Madariaga stress drop
ΔσMf c of 4.6 MPa (Allmann and Shearer, 2009) to predict
the corner frequency for the strong ground motion prediction.
As mentioned earlier, we need to use energy-based corner fre-
quency f̄ ER

c rather than f̄ c, the spherical mean corner frequency
predicted using equation (9) and Madariaga’s k. From Table 1,
f̄ ERc � 1:85f̄ c. For any given magnitude, this f̄ ER

c is only 4.6%
larger than the corner frequency predicted using a ΔσBf c of
4.64 MPa (Baltay and Hanks, 2014), equation (9), and
Brune’s k. The similarity in the corner frequency leads to
the similarity in predicted strong ground motion parameters.
The source spectrum using Madariaga stress drop ΔσMf c of
4.6 MPa (Allmann and Shearer, 2009) will also produce a sat-
isfactory explanation for the observed mean PGAs and mean
PGVs. Hence, from a perspective of conserving total radiated
seismic energy, the agreement in stress value between these two
studies is expected. Both suggest that the average static stress
drop Δσs is about 4.6 MPa. However, all of our discussions are
based on Brune’s omega-square source spectral model (equa-
tion 4). The spectral model adopted by Allmann and Shearer
(2009) has a high frequency fall-off rate γ of 1.6. Numerical
analysis has shown that the f̄ c value of an earthquake deter-
mined by the conventional spectra fitting method is sensitive
to the preassigned γ value (see table 1 of Kaneko and Shearer,
2015). Furthermore, the mean stress drop of 4.6 MPa is about
50% larger than the mean Δσs of global large earthquakes
based on seismic moment and fault rupture area (e.g.,

Kanamori and Anderson, 1975). This discrepancy is discussed
later.

We can directly estimate f̄ ER
c with observations, using the

robust method proposed by Snoke (1987). For a given S-wave
displacement record u(t), Snoke (1987) suggested calculating J,
which is the integral of the square of the observed ground
velocity �ụ �t�2�. Based on Parseval’s theorem, J is the second
moment of the power spectrum, which is proportional to the
seismic radiated energy density associated with its ray path.
Through the conservation of seismic radiated energy, Snoke
(1987) derived an analytic relation between J and the corner
frequency f c of an equivalent Brune displacement spectrum
(equation 4). He obtained f c � �J=�2π3Ω2

0��
1
3; Ω0 is the long

frequency asymptote of the corresponding displacement spec-
trum. Apparently, under a point source approximation f c of
Snoke method is exactly the ER-based corner frequency
f̄ ER
c defined earlier. Kaneko and Shearer (2015) evaluated
Snoke’s method using synthetic data of their dynamic crack
model with VR � 0:9β. They found that the f c defined by
Snoke’s method is less dependent on the takeoff angle than
the conventional spectral fitting method. The corresponding
k value using Snoke’s method is 0.36 for S-wave spectra
(Kaneko and Shearer, 2015), which is much larger than
K&S’s k (0.26, Table 1) but nearly identical with the theoretical
ER-based kER for the K&S model (0.376, Table 1) and with
Brune’s k (0.372). Using k = 0.36 and ηR � 0:48 in equa-
tion (10), we obtain cp � 1:14. It suggests that the f c estimated
using Snoke’s method is only 4.3% smaller than the theoretical
f̄ ER
c for the K&S model (Table 1). Using this f c to approximate
f̄ ER
c , the estimate of ER is about �12% � 1 − 1

cp
� smaller than the

corresponding theoretical value. This negligible discrepancy
affirms the argument that the f c defined by Snoke’s method
is less dependent on the takeoff angle (Kaneko and Shearer,
2015). Only under this condition, �f̄ c�3 ∼ f 3c holds. For a com-
parison, observational studies often assume an omega-square
source spectrumwhen conducting spectra fitting (e.g., Ide et al.,
2003; Mayeda et al., 2007; Baltay et al., 2011). Kaneko and
Shearer (2015) also test this approach using the same synthetic
data. They obtained k = 0.34, again closer to kER than the k of
the K&S model. The corresponding f c is about 10% smaller
than the theoretical f̄ ERc for the K&S model (Table 1). Using
this alternative approach, the ER estimate is then 26% smaller.
This approach is then slightly worse than Snoke’s method.

Using the f̄ ER
c estimated with Snoke’s method, kER , and

equation (5b), one can estimate static stress drop, which we
name ER-based static stress drop ΔσER

. The model dependency
of kER leads to the model dependency of ΔσER

. We use ΔσBER
,

ΔσMER , and ΔσKSER
for Brune’s, Madariaga’s, and K&S’s model,

respectively. ΔσBER was originally proposed by Snoke (1987)
as a relatively robust way to estimate Brune’s stress drop.
Because kER of these three models (Table 1) are remarkably
close, the relative differences among ΔσBER

, ΔσMER
, and ΔσKSER

are less than 15%. We select ΔσBER as their representative value.
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DISCUSSION
Snoke (1987) pointed out that ignoring the contribution of P-
wave radiation and directivity effect, ΔσBER is a constant multi-
ple of apparent stress σa, that is, ΔσBER

=σa � 2=ηR ∼ 4:3
(Table 1). The similarity in seismic radiation efficiency ηR
among the conventional spectral models (Table 1) leads to
relatively model-independent ER-based stress drop ΔσER

. For
natural earthquakes the agreement between ΔσBER

and Δσs,
however, will depend on how well the ηR of an earthquake
agrees with Brune’s model (0.466, Table 1). As shown
next, the value of ηR is sensitive to many source parameters.

Variations of seismic radiation efficiency ηR
Previous theoretical studies have shown that ηR (the ratio
between seismic radiated energy ER and the available strain
energy ΔW) is positively correlated with rupture velocity
VR (e.g., Husseini and Randall, 1976; Venkataraman and
Kanamori, 2004; Kanamori and Rivera, 2006). Kaneko and
Shearer (2015) examined a variety of crack rupture scenarios
for circular and elliptical faults with constant VR ranging from
0:6β to 1:6β (Fig. 1). They reported that for a radially propa-
gating rupture on a circular fault, ηR decreases from 0.48 to
0.20 when VR decreases from 0:9β to 0:6β (blue line,
Fig. 1). ηR is also sensitive to fault geometry and symmet-
ric/asymmetric rupture style. For the scenarios with
VR � 0:7β, a reasonable value for SCEs (Kanamori, 1994), ηR
decreases from 0.26 for a symmetric rupture expansion on a
circular fault to 0.16 for an asymmetric rupture expansion
on a circular fault or a symmetric rupture expansion on an
elliptical fault. ηR decreases even more to 0.11 for an asymmet-
ric rupture expansion (VR � 0:7β) on an elliptical fault
(Kaneko and Shearer, 2015). The mean ηR of these four sce-
narios is 0.17—about one-third of ηR for a circular expanding

crack (VR � 0:9β) (Fig. 1a). The maximum ηR found by
Kaneko and Shearer (2015) is 0.5. Based on the results of
Kaneko and Shearer (2015) we would conclude that the
ηR ∼ 0:5, representative of the three conventional source spec-
tral models—Brune, Madariaga, and K&S (Table 1)—is essen-
tially an upper bound on ηR for a propagating crack-type
rupture on elliptical faults with constant VR and uniform static
stress drop (Δτ�ξ� � constant). This is an important property
when we discuss ηR of natural earthquakes.

(a) (b)

Figure 1. (a) Dependency of seismic radiation efficiency ηR and (b) apparent
seismic radiation efficiency ηAR on rupture velocity. The vertical dashed line
divides the plot into subshear and supershear rupture velocity regions. The
horizontal dashed line, ηAR � 0:5, highlights the uppermost bound of
circular or elliptical crack models with near homogeneous stress drop
distribution. The predictions using model KB04 (Kanamori and Brodsky,
2004) with limiting rupture velocity CL of 0:92β and β are presented as solid
black lines. The results of Kaneko and Shearer (2015) are shown in blue for
rupture scenarios on circular fault planes and in green for rupture scenarios
on elliptical fault planes. The filled circles and solid color lines are used for
radial or bilateral rupture propagation; filled triangles and dashed lines are
for unilateral rupture. The red symbols represent the three rupture modes of
Wang and Day (2017) with EC: expanding crack, GP: growing pulse, and
SS: steady-state pulse. For comparison, in (a) the black square denotes the
geometric mean ηR of large shallow subduction earthquakes reported in Ye
et al. (2016) (rupture velocity is 2.5 km/s; average shear-wave velocity at
source centroid depth is ∼4 km/s, Lingling Ye, personal comm., 2020). In
(b) the black bar indicates the ηAR for a representative shallow crustal
earthquake with rupture velocity of �0:7 − 0:8�β, fΔσ of 4.64 MPa, and
Δσs of 3.0 MPa. The black square shows a representative subduction
earthquakes (SUB) event with σa of 0.56 MPa (Ye et al., 2016) and Δσs of
3.0 MPa. See Variations of Seismic Radiation Efficiency ηR and
Heterogeneous Static Stress Drop Distribution and Apparent Radiation
Efficiency (ηAR ) for details.
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However, the theoretical relation between ηR and VR is model
dependent. Kanamori and Brodsky (2004) considered a propa-
gating crack that is driven by the stress concentration near the
crack tip. They suggested a simple ηR − VR relation based on
energy balance consideration: ηR � �VR=CL�2, CL is the limiting
rupture velocity, 0:92β (Rayleigh wavespeed) orβ, assuming sub-
shear rupture propagation (black lines, Fig. 1). This relation is
generally consistent with the similar relations for the rupture
propagation of mode I, II, and III cracks (Kanamori and
Rivera, 2006). However, for the given rupture velocity VR it pre-
dicts a much larger ηR than found for any of the crack models
(Fig. 1a). This difference probably reflects the difference in the
fracture energy density distribution. The fracture energy density
(the energy per unit fault surface needed to advance the rupture
front, Madariaga, 1976) is constant on the fault plane in the
models of Kanamori and Brodsky (2004) but increases with
the rupture propagation distance in the dynamic crack models
(Madariaga, 2011; Kaneko and Shearer, 2014).

The 3D spontaneous dynamic simulations using the rate
and state friction law result in both crack and slip-pulse rup-
ture scenarios, dependent on the value of slip weakening veloc-
ity (Wang and Day, 2017). The ηR of their EC model is 0.4—
considerably smaller than the ηR of three conventional spectral
models (0.466–0.533, Table 1). However, the VR of this model
changes from 0:84β to 0:88β with a mean of 0:86β. By inter-
polating the model predictions of Kaneko and Shearer (2015),
we have estimated ηR of a quasi-dynamic crack model with
VR � 0:86β and obtained an ηR estimate of 0.42, agreeing with
the EC model. On the other hand, the ηR of the slip-pulse mod-
els generally are close to the predictions of Kanamori and
Brodsky (2004) but slightly smaller (Fig. 1a). In Wang and
Day (2017) the fracture energy density for the rate and state
friction law is not clearly defined during slip-pulse rupture sce-
narios, because the sliding friction never reaches a constant
during the entire rupture process. Constant fracture energy
density or propagational dependent fracture energy density
may be viewed as approximations to the two end member rup-
ture modes, that is, slip pulse and crack.

Heterogeneous static stress drop distribution and
apparent radiation efficiency (ηAR).
The ηR used in this study can be rewritten as 2σa=ΔσEs (equa-
tion 7) (Noda et al., 2013), related with energy-based average
stress drop ΔσEs rather than Δσs:We will then refer to 2σa=Δσs
as apparent seismic radiation efficiency ηAR , which is twice the
Savage–Wood efficiency (Savage andWood, 1971; Beeler et al.,
2003). Note ηAR � �ΔσEs =Δσs�ηR. All of the crack models we
reviewed have roughly uniform stress drop distributions, that
is, Δτ�ξ� � Δσs. In these cases, ΔσEs � Δσs and, consequently,
ηAR � ηR. However, decades of finite fault studies have shown
that large earthquakes generally have heterogeneous slip and
variable static stress drop on the fault (e.g., Heaton, 1990;
Mai and Beroza, 2002), that is, Δτ�ξ� ≠ Δσs. Thus ΔσEs > Δσs

(Kikuchi and Fukao, 1988; Noda et al., 2013) and ηAR > ηR.
Practically it is difficult to measure ΔσEs precisely using seismic
and geodetic data, because it is sensitive to the small-scale slip
heterogeneities (Adams et al., 2017, 2019). Therefore, relative
to ηR, η

A
R is a more robust seismological measurement.

Although ηR and ηAR are often used interchangeably in the
literature (e.g., Venkataraman and Kanamori, 2004; Lambert
et al., 2021), they can be quite different for earthquakes with
heterogeneous rupture. As mentioned earlier, the slip pulse
models of Wang and Day (2017) are associated with hetero-
geneous stress drop distributions; ηAR of these models is 1.3–
1.4 times the corresponding ηR. Using the Δσs=σa ratios in
Table 1, we obtain ηAR of 0.87 for the GP model and 0.65
for the SS model (Fig. 1b). Somerville et al. (1999) analyzed
a collection of finite-fault models for SCEs. They found that
the cumulative asperity area during an earthquake is about
a quarter of the entire rupture area, and about one-half of
the total seismic moment is released by the rupture of asperities
that have an average slip twice the average slip of the entire
fault. This result was confirmed in later studies (Irikura and
Miyake, 2010; Asano and Iwata, 2011). The mean static stress
drop of the asperities is 10.5 MPa—4.6 times larger than the
Δσs of the entire fault (Irikura and Miyake, 2010).

One can estimate ΔσEs =Δσs for a representative earthquake
that roughly obeys the scaling relationships of Somerville et al.
(1999). For convenience of discussion, let us simply assume
that this earthquake has a circular fault plane containing one
circular asperity. The area, average fault slip, and Δσs of the
entire fault are A, D, and 2.3 MPa, respectively. Those of
the asperity are 0.25 A, 2.0 D, and 9.2 MPa. The seismic
moment of the asperity is half of the entire rupture. It is easy
to show that the ΔσEs of this event is as large as 4.6 MPa, even
when one assumes zero static stress drop within the region
outside the asperity but inside the rupture plane (asperity
model, Boatwright, 1988; Irikura and Miyake, 2010). Thus
ΔσEs =Δσs � 2. If the seismic radiation of the asperity is esti-
mated with Brune’s model, as is commonly used in strong
ground motion simulation (Graves and Pitarka, 2010;
Irikura and Miyake, 2010), the radiated seismic energy from
the asperity can be represented as ΔσAs MA

0 =�4:3μ�, in which
ΔσAs and MA

0 are static stress drop and seismic moment of
the asperity, respectively. It is easily shown that ηR, η

A
R , and

apparent stress σa of the entire fault are approximately
0.466, 0.932, and 1.1 MPa, respectively. Here, we ignore the
contribution from the region outside the asperity but inside
the rupture plane (Irikura and Miyake, 2010). We emphasize
that ηAR is twice ηR. Coincidentally, this σa is consistent with the
mean of global SCEs (e.g., Ide and Beroza, 2001; Baltay et al.,
2011; Convers and Newman, 2011; Kanamori et al., 2020). It is
important to note that rupture heterogeneities also affect the
comer frequency f c using the conventional spectral fitting
methods; f c was found to be more sensitive to the dominant
subevent size than to the overall event size (Boatwright, 1984a).
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Two possible mechanisms that could explain the observed
heterogeneous static stress drop distributions of global large
earthquakes are: (1) the distributions result from preexisting
heterogeneities on the fault surface, such as asperities (Lay et al.,
1982) and barriers (Aki, 1984); (2) the distributions result from
ruptures satisfying a rate and state friction law (Wang and Day
(2017). Preexisting on-fault heterogeneities and velocity weak-
ening friction law are also the conventional explanations for the
observations that the average rise time of an earthquake is often
much smaller than its total rupture duration, that is, slip-pulse
(Heaton, 1990; Beroza and Mikumo, 1996). These two mecha-
nisms are indistinguishable when looking at ηAR .

In summary, although the three conventional source spec-
tral models—Brune, Madariaga, and K&S (Table 1)—predict
nearly identical theoretical ηAR values, many factors can affect
the ηAR . Large earthquakes have predominant unilateral rupture
style (McGuire et al., 2002) and slower rupture propagation
velocity VR (0:7–0:8β, Kanamori (1994)). Both lead to decreas-
ing ηAR compared to the predictions of these conventional
spectral models (Fig. 1). In contrast, either preexisting hetero-
geneities (e.g., Aki, 1984) or slip-pulse behavior (e.g., Heaton,
1990; Wang and Day, 2017) would increase ηAR compared to
the predictions (Fig. 1b). These theoretical considerations
can be used to explain the observations but cannot quantita-
tively predict the range of ηAR . Estimates of ηAR for large SCEs are
limited and have considerable uncertainties (Venkataraman
and Kanamori, 2004; Lambert et al., 2021). Most estimates vary
between 0.3 and 1.0 with a few larger than 1.0 (Venkataraman
and Kanamori, 2004). If one uses 0.466 of Brune’s model to
approximate the ηAR of large SCEs, without additional correc-
tions, one has to accept a factor of 2 uncertainty around the
mean, that is, 0:233 < ηAR < 0:932. This empirical uncertainty
in ηAR leads to uncertainty in Δσs from the ΔσBER

approach
(Snoke, 1987). However, this uncertainty is linear with respect
to ηAR ; unlike the uncertainty associated with Δσ f c that cubes
measurement error in corner frequency f c.

Our general knowledge about SCEs suggests that the mean
ηAR of SCEs may be larger than that predicted by Brune’s model.
Consider a scenario SCE with Δσs of 3.0 MPa (e.g., Hanks and
Bakun, 2008; Leonard, 2010), apparent stress σa of 1.0 MPa (e.g.,
Ide and Beroza, 2001; Baltay et al., 2011; Convers and Newman,
2011; Kanamori et al., 2020), rupture velocity VR of 0:7β − 0:8β
(Kanamori, 1994). The corresponding ηAR is 0.66, about 40%
larger than ηAR of Brune’s model but in agreement with the
SS slip-pulse model of Wang and Day (2017; Fig. 1b). On
the other hand, the average ηAR of large shallow interplate sub-
duction earthquakes (SUBs) might be smaller. Ye et al. (2016)
reported estimates of ΔσEs and σa for 114 Mw > 7 shallow sub-
duction interplate earthquakes. The geometric means of ΔσEs ,
σa, and ηR were 3.44 MPa, 0.56 MPa, and 0.34, respectively
(Fig. 1a). If the mean Δσs of SUBs is still 3.0 MPa (Kanamori
and Anderson, 1975; Leonard, 2010), ηAR is 0.37, about 25% less
than that of Brune’s model.

The physical meaning of “stress parameter”
Boore (1983) introduced the terminology “stress parameter”
(fΔσ), following the seminal work of Hanks and McGuire
(1981). For a given earthquake, he used fΔσ, seismic moment
M0, and the k value of Brune’s model to predict the corner
frequency of its source spectrum (equation 9). This source
spectrum was subsequently used to predict PGA, PGV, local
magnitude, and response spectra successfully. fΔσ has even
since been widely used as a key source parameter during
the stochastic strong ground motion simulations (e.g.,
Atkinson and Boore, 1995; Atkinson and Silva, 1997; Boore,
2003; Graves and Pitarka, 2010; Boore et al., 2014).
However, the physical meaning of stress parameter fΔσ has
not been clearly defined. fΔσ of earthquakes is often different
from the corresponding Δσs and ΔσBf c (M0 & f c stress drop
with Brune’s k or Brune stress drop, e.g., Hanks and
McGuire, 1981; Boatwright, 1984b; Atkinson and Beresnev,
1998). We surmise that might be the reason why Boore
(1983) did not simply call it Brune stress drop.

We emphasize that during such forward stochastic strong
ground motion simulations with Brune ω−2 source spectra
and Brune’s k, the analytical relation fΔσ=σa � 2=ηR ∼ 4:3
(Andrews, 1986; Singh and Ordaz, 1994) firmly holds. In prin-
ciple, fΔσ is simply another form of apparent stress σa and shall
be equal to ΔσBER

. The mean σa ofMw > 5:5 SCEs was found to
be about ∼1.0 MPa, independent of magnitude (Ide and Beroza,
2001; Ide et al., 2003; Prieto et al., 2004; Baltay et al., 2011;
Convers and Newman, 2011; Kanamori et al., 2020). For a given
magnitude, σa is log normal distributed with significant log nor-
mal standard deviation (0.41 in log10 units, Baltay et al., 2011).
Baltay and Hanks (2014) showed that the mean PGA and mean
PGV at stations close to the faults for 3 < M < 8 shallow earth-
quakes in tectonically active regions (Ancheta et al., 2014) can be
matched with a point source stochastic procedure and Brune’s
spectral model with fΔσ of 4.64 MPa. It is equivalent to say that
these data can be modeled using Brune ω−2 source spectra with
an apparent stress σa of 1.1 MPa, consistent with the mean σa
previously reported for global shallow earthquakes. In fact, the
mean σa may be more robust than fΔσ because fΔσ is model
dependent. Ji and Archuleta (2020) found that the data studied
by Baltay and Hanks (2014) can be well explained using a dou-
ble-corner frequency (DCF) source spectrum. Although the
stress parameter of these DCF models cannot be properly
defined, the predicted apparent stress σa is 0.73 MPa using
self-similar model JA19. If one uses the non-self-similar
JA19_2S model, the synthetic σa varies slightly from 1.6 to
0.73 MPa when moment magnitude changes from 5.3 to 7.3,
with a geometric mean of 1.1 MPa. Ji and Archuleta (2021) also
noted that the predicted σa of additive DCF spectral model AS00
(for California earthquakes, Atkinson and Silva, 2000) has sim-
ilar magnitude dependency as JA19_2S (Ji and Archuleta, 2021).
On the other hand, the σa of additive DCF spectral model AB95
(for eastern North California earthquakes, Atkinson and Boore,
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1995) is considerably larger, possibly reflecting the tectonic
significance.

Stress parameter fΔσ may not be equal to the average static
stress drop Δσs on the fault (Atkinson and Beresnev, 1998). In
the literature, the apparent stress σa was considered as an esti-
mate that is related with dynamic stress and rupture velocity
(Madariaga, 1976; Boatwright, 1984b; Ji and Archuleta, 2020).
We suspect that stress parameter fΔσ is related with dynamic
and rupture velocity as well. The inequality fΔσ > Δσs has been
noticed during the studies of large California and eastern North
America earthquakes (e.g., Hanks and McGuire, 1981; Boore,
1983; Atkinson and Beresnev, 1998). This inequality may on
average hold for Mw > 5 SCEs in tectonically active regions.
For these earthquakes, the scaling relationship M ∼ log�A� � 4,
in which A is in km2, is generally applied (e.g., Leonard, 2010).
This scaling relation suggests a Δσs of 3 MPa. By analyzing the
results of finite-fault slip models, Somerville et al. (1999) and
Irikura and Miyake (2010) reported a mean Δσs of 2.3 MPa.
Both the results are smaller than the fΔσ of 4.64 MPa (Baltay
and Hanks, 2014). If fΔσ of 4.64 MPa is equivalent with
σa ∼ 1:1 MPa andΔσs ∼ 3:0 MPa, ηAR of 0.7 would be suggested.
The inequality fΔσ > Δσs of SCEs, which still needs further con-
firmation, then suggests that the mean ηAR of SCEs is∼50% larger
than that of Brune’s model (∼0.466, Table 1). SCEs radiate, on
average, more seismic energy than what is predicted by Brune’s
model, Madariaga’s model, and K&S’s model.

However, this interpretation has caveats. First, fΔσ is con-
strained by the seismic radiation within a limited frequency
band. The strong ground motion parameters such as PGA
and PGV, used to constrain fΔσ (Hanks and McGuire, 1981;
Boore, 1983; Baltay and Hanks, 2014), are sensitive to
band-limited seismic signals. Because of path attenuation, seis-
mic signals with frequency above 8–10 Hz have negligible con-
tributions to the strong ground motion parameters (Hanks and
McGuire, 1981; Anderson and Hough, 1984; Baltay and Hanks,
2014). PGAs and PGVs in near-fault regions are also less sen-
sitive to the relatively long period (<2 Hz) seismic signals
(Atkinson and Silva, 2000). Using fΔσ of 4.64 MPa, the corre-
sponding corner frequency for M >5 earthquakes is less than
0.9 Hz. For such earthquakes, the predicted high-frequency
acceleration source spectrum is essentially flat from 2 to
10 Hz with a spectral level Ahf � �0:49β�2M1=3

0
fΔσ2=3 (β, M0,

and fΔσ are in units of m/s, N · m, and Pascal, respectively).
The success of Brune’s model (which predicts no directivity)
in engineering applications is consistent with the observations
that rupture directivity effects during large earthquakes
become negligible for seismic signals with frequency larger
than 1.5 Hz (Somerville et al., 1997). However, the dynamic
cause of this lack of directivity effect in high frequency radi-
ation is still under investigations (e.g., Bernard et al., 1996;
Gusev, 2013; Tsai and Hirth, 2020).

Second, Atkinson and Silva (2000) pointed out that despite
its success in modeling high-frequency ground motions, a

single corner frequency point source consistently overpredicts
ground motions from moderate to large earthquakes at low-to-
intermediate frequencies (∼0.1 to 2 Hz) in California and else-
where. A slight decrease of fΔσ with magnitude for Mw 5.0–7.5
earthquakes was observed (Atkinson and Silva, 1997); this
can be interpreted as a finite fault effect (Atkinson
and Silva, 1997) or a consequence of the non-self-similar scal-
ing fault length relation (Ji and Archuleta, 2022).

Third, the value of fΔσ is related with the assumptions about
site effects, geometric spreading, and earth attenuation (Boore,
1983; Baltay and Hanks, 2014). The uncertainty of fΔσ reported
in Cotton et al. (2013) was simply mapped from the uncer-
tainty of attenuated ground motion observations through a
scaling relationship. In contrast, σa is typically constrained by
observations for which the effects of earth attenuation and geo-
metric spreading factor were corrected (e.g., Ide et al., 2003;
Mayeda et al., 2007). The assumptions about these effects used
in earthquake seismology might not be same as what were used
in engineering seismology. Because of the importance of fΔσ in
engineering seismology and σa in earthquake seismology,
systematic investigations of ΔσBER and fΔσ remain a high
priority.

Relations among Δσs, Δσf c , ΔσER , and gΔσ
Aki (1967) proposed the self-similar earthquake model that has
an omega-square source spectrum with corner frequency f c and
seismic moment M0 satisfying M0 ∝ f −3c : Because of σa ∝M0f 3c
(equation 8), Aki’s scaling law leads to magnitude-independent
apparent stress σa (Madariaga, 2011). By further assuming f c ∝
1=Td (Td is rupture duration), constant rupture velocity VR,
and Td ∝ L̃=VR, Aki (1967) linked the corner frequency with
fault length L̃ and claimed that the assumption of similarity
implies a constant static stress drop Δσs independent of source
size. Aki’s three assumptions were widely adopted in the late
source scaling analyses (e.g., Kanamori and Anderson, 1975;
Vallée, 2013). For the source spectral models summarized in
Table 1, the relation between f c and L̃�� 2a; a is radius
of the fault plane� depends on coefficient k. The difference in
k suggests that this relation is nonunique even for an ideal radi-
ally propagating circular rupture with a constant VR. Because
the stress drop Δσ f c is proportional to f̄ 3c=k

3 (equation 5b),
the relation between Δσ f c and Δσs is subject to cubed uncer-
tainty from not only the measurement error of f̄ c but also the
model uncertainty of k. The potential errors of f̄ c due to sam-
pling bias, limits of integration, and the necessary radiation pat-
tern and path effect corrections were discussed previously (see a
recent review, Abercrombie, 2021). Natural earthquakes often
have irregular fault planes, arbitrary hypocenter locations,
and heterogeneous slip distributions. Consequently, k may be
different for every earthquake. Even if we obtain a precise f̄ c
measurement, Δσ f c could be significantly different with Δσs;
and the ratio ofΔσ f c andΔσs is not a simple constant. Themean
and standard deviation of such event-dependent k are then
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critical and desired for further investigations. In similar, the rela-
tion between Δσ f c and stress parameter fΔσ also suffers from
both the measurement error of f̄ c and the model uncertainty
of k. fΔσ may bear no relationship to real static stress drop
Δσs on the fault surface (Atkinson and Beresnev, 1998) but
because of the way it was defined (Boore, 1983), fΔσ scales
with apparent stress σa. We notice that the k that is used to
relate Δσs with f̄ c cannot be directly applied for the prediction
of σa.

It is of interest to summarize the relationship between ΔσER

and Δσ f c . On one hand, ΔσER , which is introduced in this
study, is equal to Δσ f c if the earthquake was well modeled
by one of the corresponding spectral models, for example,
the K&S model. The kER of the three conventional source spec-
tral models is close to the k of Brune’s model (Table 1). On the
other hand, if the observed source spectra cannot be precisely
modeled with an omega-square Brune spectrum for every take-
off angle, f̄ ER

c can be considerably different from f̄ c (e.g., f̄
ER
c �

1:45f̄ c for K&S model, Table 1). In such circumstances, even if
one uses kER and k for the same spectral model, ΔσER

and Δσ f c
are expected to be different for earthquakes whose source spec-
tra are better matched with spectral models that have more
than one corner frequency (e.g., Brune, 1970; Gusev, 1983;
Archuleta and Ji, 2016; Denolle and Shearer, 2016; Ji and
Archuleta, 2020). Though the theoretical relationship between
ΔσER

and Δσs is hard to define quantitatively, we find an
empirically rough agreement between ΔσER

and Δσs exists
for Mw > 5:5 earthquakes, and ΔσER

is on average slightly
larger for SCEs in tectonic regions. From a perspective of
ER conservation, fΔσ � ΔσBER

(Table 1). This theoretical con-
sistency is useful if one attempts to investigate whether fΔσ
of moderate-to-large earthquakes, which is correlated with
strong ground motion, can be predicted using the stress drop
of small earthquakes (e.g., Hardebeck, 2020).

In the end, it is noteworthy that similar to Δσ f c , the mea-
surements of seismic radiated energy ER or apparent stress σa
are also error prone, especially for small earthquakes (e.g., Ide
and Beroza, 2001; Kanamori and Rivera, 2004; Baltay et al.,
2011; Abercrombie, 2021). Generally, the aforementioned
sources of errors that contaminate f̄ c measurements (e.g.,
Abercrombie, 2021) will also affect ΔσER measurements.
However, the quality of ER measurements has been gradually
improving with the advances in seismic observations and
methodology (e.g., Mayeda andWalter, 1996; Boatwright et al.,
2002; Venkataraman et al., 2002; Ide et al., 2003; Abercrombie
and Rice, 2005; Mayeda et al., 2007; Baltay et al., 2010; Walter
et al., 2017; Kanamori et al., 2020).

CONCLUSIONS
Although the conventional source spectral models can lead to
widely different estimates of static stress drop Δσs, they all pre-
dict that earthquakes radiate about half of the available strain
energy to the surrounding medium. This suggests that the ER-

based stress drop, for example ΔσER
(Snoke, 1987), is less

model dependent. The relation ΔσER
and Δσs is sensitive to

the apparent radiation efficiency ηAR . Previous studies suggested
that ηAR of large SCEs varies within a relatively limited range
around the predictions of the conventional source spectral
models. Thus, on average, the ER-based stress drop gives a rea-
sonable approximation to Δσs.

Except for the Brune (1970) model, source spectral models
were developed by constructing the relationship between the
spherical mean corner frequency f̄ c and static stress drop
Δσs using the synthetic data generated by the dynamic or kin-
ematic rupture models (e.g., Sato and Hirasawa, 1973;
Madariaga, 1976; Kaneko and Shearer, 2014). Corner fre-
quency and high-frequency fall-off rate change with the takeoff
angle. Because of �f̄ c�3 ≤ f 3c ; f̄ c cannot be used to make reliable
forward predictions of ground motion or radiated seismic
energy without additional corrections. From a perspective of
conserving total radiated seismic energy, Brune’s model is
the only choice among the three conventional models for
the forward prediction if one does not make the correction
related with cp.

We argue that the nearly constant stress parameter fΔσ found
in engineering seismology (e.g., Boore, 1983; Baltay and Hanks,
2014) is equivalent to having constant apparent stress σa in
earthquake seismology (e.g., Ide and Beroza, 2001). For Mw >
5:5 SCEs, fΔσ is roughly independent of magnitude and, on aver-
age, larger than Δσs. It is equivalent to saying that SCEs radiate,
on average, more seismic energy than what is predicted from the
three conventional dynamic crack models. Within the uncer-
tainty, the spectral models for the SCEs in the active tectonic
regions (Ancheta et al., 2014), that is, AS00 (Atkinson and
Silva, 2000), BH14 (Baltay and Hanks, 2014), and JA19 and
JA19_2S (Ji and Archuleta, 2020), can be reconciled with σa ∼
1:0 MPa (Ide and Beroza, 2001; Baltay et al., 2011; Kanamori
et al., 2020). This consistency, which needs further confirmation,
is important. It suggests that the strong ground motion param-
eters collected in the studies of engineering seismology, such as
PGAs and PGVs, are useful datasets to constrain the seismic
radiated energy. The scatter of σa was substantially reduced if
one considers seismic region, tectonic setting, and fault type
(Choy et al., 2006), which may also be used to reduce the scatter
of fΔσ in seismic hazard assessment.
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accessed in December 2021.
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APPENDIX
Seismic radiation efficiency of Maradiaga's model
(Madariaga, 1976)
Madariaga (1976) derived the relationship between the apparent
stress σa and effective (dynamic) stress drop τe for his model:

EQ-TARGET;temp:intralink-;dfa1;41;679σa �
1
2
τe

�
2 − Δσ ′ −

g�VR�
D

�
: �A1�

Here, g�VR� represents the contribution of the fracture
energy, which is a function of rupture velocity; D is the slip
at the center of the fault, and Δσ ′ denotes the ratio of static
stress drop Δσs and τe (Madariaga, 1976). g�VR� and Δσ ′

are sensitive to the rupture velocity. Madariaga (1976) reported
the values of these two functions for two rupture velocities
when VR � 0:9β, Δσ ′ � Δσs=τe � 1:2, and g�VR� � 0:21.

Without overshoot the static crack solution (Eshelby, 1957)
of fault slip at the center is 24

7π ∼ 1:09 (nondimensional,
Madariaga, 1976). Because of overshoot, D is �1:31 − Δσ ′�
times larger than the static solution. Using these values in
equation (A1), σa ≅ 0:267Δσs. Assuming ΔσEs � Δσs, we find
ηR ∼ 0:533. With VR � 0:6β, Δσ ′ � 1:15, and g�VR� � 0:72,
giving σa ≅ 0:120Δσs and ηR ≅ 0:240. For both the rupture
velocities, the estimates of ηR are larger than the estimates
of Kaneko and Shearer (2015) by 11%–20%. These differences
could be explained by the differences in Δσ ′; Kaneko and
Shearer (2015) have Δσ ′ equal to 1.26 for VR � 0:9β and
1.21 for VR � 0:6β.
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