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Framework of dynamic rupture simulation

* Physics-based approach: Solving for spontaneous dynamic
earthquake rupture as non-linear interaction of frictional
failure and seismic wave propagation
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Where are we now?

A woman stands near the 1906 ground rupture
northwest of Olema in Marin County.
J. B. Macelwane Archives, Saint Louis University

. -

Unlike ground motions, we have very limited knowledge
of how and how much the fault displacements are
physically influenced by faults and surrounding media.
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Near-surface stress asperities
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Near-surface fault geometry
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Multi-scale fault roughness

Geometrical complexities (segmentation, branch, roughness etc.) may introduce fault-
displacement complexities
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Fault connectivity at depth
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Off-fault inelasticity: plasticity and microfracture

Plasticity can mimic observed off-fault displacement and microfracture can also mimic off-
fault deformation and distributed faulting
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Why Landers?
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Prestress and friction

Slip weakening Friction
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Validation by PSD slope (Hurst exponent)

« multiple realizations p
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Add roughness + plasticity
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We start with a simple self-similar rough fault and Drucker-Prager plasticity model. While

they are simple, we can understand the first-order on-fault geometrically rough and off-
fault inelastic impacts.
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Simulated fault displacements

5 ~Mw 7.3
o H =04 AN In
,‘.-: A
AN | ..
53‘ ‘Ao,!/ ! x e "‘. 4
s v“ | . | ‘. .'a‘. .
w5 ' .o . . o 1 L
) . 4 D' < .o.. :‘:-
. | ' 4t COLRN |1
T N S 2 ‘
et KT = A & &{i’i . h XY
0 4 K i ST
3770000 3780000 3700000 3800000 3810000 3820000 3830000 3840000

uim N (m)

104

102

10°

psd (m3)

107

1076

Plas}ti}c

.86

)

1075

Elastic

1073

1072

=

oy

A2

1075

Fault roughness improves validation of PSD Hurst exponent but not sufficient.

6/12/20

Southern California Earthquake Center

10

1073

k(m~1)

1072



Hurst exponent as a metric for valzdatzon"
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Two Hurst components
discovered in Landers, Hector
Mine and Balochistan EQs

Hurst exponents in our simulations
are consistent with those in large
wavelength

Minimal resolvable wavelength
by simulations? Is it related to
biased geological measurements,
classifications of principal and
distributed faulting?




Hurst exponent as a metric?

- T B Two Hurst components
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by simulations? Is it related to
biased geological measurements,
classifications of principal and
distributed faulting?

Single fault plane * How about looking at isolated

contribution of principal and

distributed fault in our database?

Our simulation

* Add more off-fault secondary
ruptures in simulation for
compensate small-scale
deficiency?

* Our dataset may shed light on
these !
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Plastic case results in observed fault zone with off-fault coseismic
deformation and reduces on-fault slip at shallow depth
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Can fault zone width distribution be constrained from the dataset?
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Simulation animations

Rupture propagation on the fault Seismic wave propagation on the ground

Time: 0.0 sec

m/s)

dip velocity (

Acceleration Magnitude (m/s/s)

6/12/20 Southern California Earthquake Center 18



Ground-motion sanity check of Landers Scenario

Goodness of fit (GMPE vs Data) Goodness of fit (Dynamic rupture vs Data)

Comparison between GMPEs and Landers
Number of stations: 21

ASK14 814
15 GOF Comparison between Landers and simulation 1007
i 10 R <200 km
g —— E - m—— RotD50
§ - 00
3. g 08 1.5 1
4 £
- — -10 . -
-1% -15 [0}
xe
v A4 o
2 L] » 2 5 »w E
Penod (sed) Penod (sec) E .0 1 - ==
B55AL4 o4 3 .
N _ 10 '
< \
; —— R 51
T T
: i 2 Period (sec) 5 10
§ 2 =05
o 10
-15 «1%
; ': » V) ; »

Period (sec) Penod (sec)

Dynamic rupture model creates reasonable ground
motions (better than GMPE in long period because of
the event term)
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Are fault displacement and ground motion correlated?
Not really ...

Regular rupture speed Fast (supershear) rupture speed
(0.8 S wave speed) (1.4 S wave speed)
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Deliverables

« multiple realizations P
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Interface Simulation Group with Dataset/Modeling Group
Simulation Group Dataset/Modeling Group
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Toward a finer and shallower world

Ideally Dr. Christine Goulet’s height
will be our finest grid size (~ 2 m)

Fault displacement is very sensitive to
= e shallow geological properties (fault structure,
: ' . surrounding velocity, inelasticity and so on).

Our future plan: toward a finer grid (~
meters, current grid 1s 50 m) in shallower (<
Ikm) depth but need to consider
computational costs

July 6", Ridgecrest M7.1 Earthquake
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Thank you!

Comments and questions?
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