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Framework of dynamic rupture simulation
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Wollherr et al, 2019
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Sensitivity of 
dynamic rupture 

parameters for fault 
displacement

Case study: 1992
Landers earthquake

validation



Where are we now?
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Unlike ground motions, we have very limited knowledge 
of how and how much the fault displacements are 
physically influenced by faults and surrounding media. 

A woman stands near the 1906 ground rupture 
northwest of Olema in Marin County.
J. B. Macelwane Archives, Saint Louis University



Near-surface stress asperities
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Dalguer et al, 2019

Stress asperities physically lead to first-order fault displacements 
(smooth curve)



Near-surface fault geometry
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1992 Landers

Milliner et al, 2015 Candela et al, 2011

Castro Area Fault

LiDAR

Laboratory laser

profilometer

White light interferometry

Geometrical complexities (segmentation, branch, roughness etc.) may introduce fault-
displacement complexities

Multi-scale fault roughness



Fault connectivity at depth
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Fault connectivity at
depth affects gradient
of fault displacement

on ground surface. 
Steep ground slip 

gradient may indicate 
shallow disconnectivity

Oglesby, 2020

Smooth at
termination

Higher slip gradients at the edges of stepovers 
that are jumped than at the edges of stepovers
that do not show evidence of being jumped
(Elliott et al., 2009)Steep near

stepover

Example: Zirkuh earthquake

Shallow disconnectivity

Deep disconnectivity



Off-fault inelasticity: plasticity and microfracture
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Plasticity can mimic observed off-fault displacement and microfracture can also mimic off-
fault deformation and distributed faulting

Roten et al., 2017

Plasticity

Elasticity

Dynamic
triggered
fractures

Wavefront

Okubo et al, 2019
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Mohr-Coulomb yield surface

c: cohesion (material dependent)

Simulated off-fault displacement
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Sensitivity of dynamic 
rupture parameters for 

fault displacement

Case study: 1992
Landers earthquake

validation



Why Landers?
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Milliner et al, 2015

• Best documented case (maybe 
before Ridgecrest EQ?): 
abundant near-field observations 
(e.g., fault displacement, ground 
motion, aerial imaging).

• Input parameters of our dynamic 
rupture have been widely 
explored (e.g., fault zone width, 
fault geometry and velocity 
structure) 



Fault geometry and velocity model
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• 3-segmented planar fault 
geometry

• 21 ground-motion stations 
for sanity check

• 1D velocity structure 

• No scatter/attenuation
involved

• Grid size = 50 m (a very 
fine grid in dynamic 
rupture models)

• Simulate up to 1Hz 
waveforms



Prestress and friction
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• Depth-dependent prestress 
is created from fault
orientation and stress
model (e.g., SCEC CSM)

• Ratio between shear and 
normal stress is constant 
over the whole fault

• Heterogeneous 
prescribed stress drop
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Validation by PSD slope (Hurst exponent)
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~Mw 7.3

H ~ 1

H ~ 0.4

Simulated fault displacement is 
very smooth (larger Hurst

exponent than of data) even with 
heterogeneous stress drop

kink

kink

Slope = 2H+1

multiple realizations
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Perfect elastoplastic model (no hardening)

П plane
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c)

Mohr-Coulomb yield surface

c: cohesion (material dependent)

Add roughness + plasticity
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c = 0.7069 x 107 (Δt)-3 , Δt is the 
inverse of the P wave velocity
Emperical relation for sandstone
from Chang et al., 2006

We start with a simple self-similar rough fault and Drucker-Prager plasticity model. While 
they are simple, we can understand the first-order on-fault geometrically rough and off-
fault inelastic impacts.

Drucker-Prager



Simulated fault displacements
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~ Mw 7.3

Fault roughness improves validation of PSD Hurst exponent but not sufficient.
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Hurst exponent as a metric for validation?
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Our Landers 
model

Bruhat et al 2020

General Rough fault 
simulation

Data: 0.44

Landers

Hector Mine

Balochistan

• Two Hurst components 
discovered in Landers, Hector 
Mine and Balochistan EQs

• Hurst exponents in our simulations 
are consistent with those in large 
wavelength 

• Minimal resolvable wavelength
by simulations? Is it related to 
biased geological measurements,
classifications of principal and
distributed faulting?

Mature Inmature
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• Two Hurst components 
discovered in Landers, Hector 
Mine and Balochistan EQs

• Hurst exponents in our simulations 
are consistent with those in large 
wavelength 

• Minimal resolvable wavelength 
by simulations? Is it related to 
biased geological measurements,
classifications of principal and
distributed faulting?

• How about looking at isolated
contribution of principal and
distributed fault in our database?

• Add more off-fault secondary 
ruptures in simulation for 
compensate small-scale 
deficiency?

• Our dataset may shed light on 
these�

Data

Our simulation

Single fault plane

Multiple complex
fault planes

Hurst exponent as a metric?
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Plastic case results in observed fault zone with off-fault coseismic
deformation and reduces on-fault slip at shallow depth

On-fault slip

Can fault zone width distribution be constrained from the dataset?

Narrower than the 
observation (low velocity 
fault zone reflecting the 
fault maturity may be 
needed)

Milliner et al, 2015
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Rupture propagation on the fault Seismic wave propagation on the ground

Simulation animations



Ground-motion sanity check of Landers Scenario
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Goodness of fit (GMPE vs Data) Goodness of fit (Dynamic rupture vs Data)

Dynamic rupture model creates reasonable ground 
motions (better than GMPE in long period because of 

the event term)



Are fault displacement and ground motion correlated? 
Not really …
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Two scenarios with very similar stress drop and 
slip distribution

Fast rupture velocity induces a large ground motion. Ground
motion can only provide loose constraints on the fault-
displacement model.



Deliverables 
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~Mw 7.3

H ~ 1

H ~ 0.4

kink

kink

Slope = 2H+1

multiple realizations

Once validated, we will have technically 
defensible and plausible suites of models, from 
which we can deliver multiple realizations of 
displacement for a given scenario.



Interface Simulation Group with Dataset/Modeling Group
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• Continue validation of 
individual events

• Start validation using 
aggregate results from 
database/Modeling Group

• Separate principal and 
distributed displacements

• Provide displacement with 
meaningful metrics

• Is this validation approach 
OK? 

• Aggregate statistical 
properties from database 
(maturity, cumulative slip, 
PSD Hurst exponent, fault
zone width, rock type and 
properties)

• Define scenarios for 
simulations
• Magnitude, geometry, 

fault zone width, rock 
type and properties

• Resolution and level of 
complexity

• Range of realizations

Dataset/Modeling GroupSimulation Group



Toward a finer and shallower world
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July 6th, Ridgecrest M7.1 Earthquake

Ideally Dr. Christine Goulet’s height
will be our finest grid size (~ 2 m)

Fault displacement is very sensitive to 
shallow geological properties (fault structure, 
surrounding velocity, inelasticity and so on). 

Our future plan: toward a finer grid (~ 
meters, current grid is 50 m) in shallower (< 
1km) depth but need to consider 
computational costs

Yes, this
size!



Thank you!
Comments and questions?
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www.SCEC.org


