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ABSTRACT 

This report presents comparisons between four new fault displacement prediction models 

that were developed through the Fault Displacement Hazard Initiative (FDHI) Project. The 

comparisons focus on displacements occurring on principal surface ruptures; however, different 

definitions of displacement are used among the models, and the differences should be considered 

when applying the new models. All FDHI models were developed using a database of 75 events 

that underwent an extensive and systematic data quality review in coordination with the model 

developers. The new models also use advanced statistical modeling which, in most cases, includes 

magnitude scaling breakpoints, separation of between- and within-event aleatory components that 

are magnitude- and location-dependent, and estimation of the within-model epistemic uncertainty. 

Two of the new models are applicable to all styles of faulting, while the other two models are for 

strike-slip and reverse events, respectively. All new models are applicable between 𝑴 6.0 and 8.0, 

where most of the empirical data exist, but some are applicable to lower or higher magnitudes. 

Similar to previously published models, the new models use earthquake size and normalized 

location along the strike of the rupture as predictor variables. 

The quantitative comparisons in this report capture a broad range of scenarios defined by 

style of faulting, magnitude, and normalized location along the rupture. Four previously published 

principal fault displacement models commonly used in engineering practice are also included for 

comparison with the new models. Average displacement predictions in the FDHI models are 

within a factor of about 1.5 for most magnitudes and styles of faulting and within a factor of 2.5 

in all cases. The average displacements in new models are generally smaller than in previously 

published models. An exception is 𝑴 ~7, where the average displacement predictions in the new 

models are roughly 40% higher. The upper-tail predictions (e.g., 99th percentile) in the FDHI 

models are within a factor of about 1.5 at the rupture midpoint in most cases and a factor of about 

2.5 at the rupture endpoint. Compared to previously published models, the upper-tail predictions 

range from about 2 to 10 times lower in most cases. Importantly, the upper tails of the displacement 

probability distributions in the new models are in good agreement with empirical observations of 

maximum displacement, particularly for large magnitudes, which is driven by a combination of an 

expanded database and improvements to the aleatory variability modeling and magnitude scaling.  
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ADDENDUM FOR REVISION 1 

This report has been updated since its original release to reflect the final models published in the 

“Fault Displacement Hazard Analysis Special Collection” of Earthquake Spectra, which is the 

peer-reviewed journal of the Earthquake Engineering Research Institute (EERI). Most new models 

are also documented in reports available through the Natural Hazards Risk and Resiliency 

Research Center (NHR3). The text, tables, figures, appendices, and chapter layout have been 

revised since the original release. 
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1 Introduction 

The Fault Displacement Hazard Initiative (FDHI) Project is a multi-year, community-based 

research project coordinated by the University of California. The objectives of the project are to 

compile a comprehensive fault rupture and displacement database and develop a set of next-

generation empirical fault displacement models. The new database is documented in a separate 

report available through the Natural Hazards Risk and Resiliency Research Center (NHR3) web 

site (Sarmiento et al., 2021). The database was compiled in coordination with the model 

developers, and all data were systematically and repeatedly reviewed for quality, completeness, 

and consistency. Using the new empirical database, four research teams developed new fault 

displacement amplitude prediction models, which we refer to more generally as Fault 

Displacement Models (FDMs).  

This report provides a comparison of the four new FDMs developed through the FDHI 

Project (Table 1.1). The new models are available in the “Fault Displacement Hazard Analysis 

Special Collection” of Earthquake Spectra1, which is the peer-reviewed journal of the Earthquake 

Engineering Research Institute (EERI). Most new models are also documented in NHR3 reports.  

For completeness, four previously published FDMs commonly used in engineering 

practice are also included in the comparisons (Table 1.1). The list of existing FDMs is not intended 

to be exhaustive because our focus is on comparing features and predictions of the new models; 

however, including common existing models provides a useful point-of-reference for the 

predictions in the new models. For example, the Wells and Coppersmith (1994) magnitude scaling 

relations for average and maximum displacement are included because they are familiar to most 

practitioners, although many other displacement–magnitude scaling relations are available. The 

Takao et al. (2013, 2018) models are based on a regional dataset and are generally not used outside 

of Japan, so they are excluded to simplify the comparisons. While some previously published 

FDMs provided predictions for principal and distributed fault displacements, the comparisons in 

this study are for principal or aggregate displacements only2. Other elements of a full probabilistic 

 
1 Earthquake Spectra's “Fault Displacement Hazard Analysis Special Collection” is available at 

https://journals.sagepub.com/topic/collections-eqs/eqs-1-fault_displacement_hazard_analysis_special_collection/eqs. 
2 The terms principal, distributed, and aggregate displacement are defined in Chapter 2. 

https://journals.sagepub.com/topic/collections-eqs/eqs-1-fault_displacement_hazard_analysis_special_collection/eqs
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fault displacement hazard analysis (PFDHA) implementation, such models for the conditional 

probability of surface rupture (e.g., Wells and Coppersmith, 1993), also are not considered here. 

Table 1.1.  Fault displacement models (FDMs) compared in this report.  

Status 
Model Name / 

Authors 
Abbreviation(1) Journal DOI(2) NHR3 DOI 

New 

Lavrentiadis and 
Abrahamson (2023) 

G. Lavrentiadis 
N. Abrahamsom 

LA23 10.1177/87552930231201531* 
Report not 
available 

New 

Moss et al. (2024) 
R. Moss 

S. Thompson 
C.-H. Kuo 
K. Younesi 

D. Baumont 

MEA24 
10.1177/87552930241288560*  

 
10.34948/N3F595 

New 

Kuehn et al. (2024) 
N. Kuehn 
A. Kottke 

A. Sarmiento 
C. Madugo 

Y. Bozorgnia 

KEA24 10.1177/87552930241291077* 10.34948/N3X59H 

New 

Chiou et al. (2025) 
B. Chiou 
R. Chen 

K. Thomas 
C. Milliner 
T. Dawson 

M. Petersen 

CEA25 To Be Assigned* 10.34948/N3RG6X  

Existing 
Wells & 

Coppersmith (1994) 
WC94 10.1785/BSSA0840040974 Not applicable 

Existing Youngs et al. (2003) YEA03 10.1193/1.1542891 Not applicable 

Existing 
Petersen et al. 

(2011) 
PEA11 10.1785/0120100035 Not applicable 

Existing Moss & Ross (2011) MR11 10.1785/0120100248 Not applicable 
(1) The abbreviation “EA” (et al.) is used for models with more than two authors. 
(2) Asterisk (*) indicates article is part of the “Fault Displacement Hazard Analysis Special Collection” 
published in 2025 by Earthquake Spectra.  

 

We begin with a discussion on the different definitions of displacement used in FDMs in 

Chapter 2. Users should consider the different definitions of displacement when applying the new 

models. Chapter 3 provides a general overview of the model formulations and parameters, and 

Chapter 4 summarizes the data sets used in the development of each model and the recommended 

applicability ranges for each model. Comparisons of the model predictions are presented in 
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Chapter 5, and examples of within-model epistemic uncertainty are provided in Chapter 6. The 

results and conclusions of this report are summarized in Chapter 7. 

Median comparisons are shown for all magnitudes, normalized locations along rupture, 

and style of faulting. The aleatory and epistemic comparisons are provided for several scenarios 

defined by style of faulting, moment magnitude, and normalized location along rupture. While the 

range of scenarios considered herein is not exhaustive, it is broad enough to demonstrate 

similarities and differences between the models. Similar to the Next Generation Attenuation 

(NGA) Program’s comparisons for ground motion models (Abrahamson et al., 2008; Gregor et al., 

2014, 2022), we provide explanations of key differences, but detailed evaluations of the 

performance of each model are outside the scope of this report.  

The FDHI Project facilitated extensive collaboration among geologists, earthquake 

engineers, model developers, practicing professionals, end-users, and sponsors. The collaboration 

occurred in monthly project meetings beginning in June 2018 and several topical working group 

meetings related to database development, model development, and model comparisons. Each new 

model team is also participating in the International Atomic Energy Agency (IAEA) probabilistic 

fault displacement hazard analysis (PFDHA) benchmarking study (Valentini et al., 2021). Detailed 

evaluations of model strengths and weaknesses conducted through the FDHI Project meetings and 

IAEA PFDHA benchmarking study informed the discussions and comparisons in this report.
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2 Definitions of Displacement Used in Fault 
Displacement Models  

Fault displacement models predict different definitions of displacement. The definition is based 

on the data used to develop the model, data processing or analysis performed by the modelers, and 

recommendations from the model developers. For example, the data might be limited to a specific 

style of faulting, displacement vector component, or type of rupture (e.g., principal, distributed, or 

summed across multiple ruptures). Understanding the displacement definition used in the FDM is 

necessary to correctly interpret and apply the results, compare results between models, and use 

alternative models to capture epistemic uncertainty. 

Surface ruptures are usually classified as principal or distributed (e.g., Coppersmith and 

Youngs, 2000; Stepp et al., 2001; Youngs et al., 2003; Petersen et al., 2011). Principal ruptures are 

the surface projection of the fault plane that generated the earthquake and ruptured at depth. 

Distributed ruptures are the other secondary ruptures, splays, and shears. Principal and distributed 

data are usually treated separately in model development because the data and driving mechanisms 

are sufficiently different. 

The definitions of displacement in the FDMs compared in this report are listed in Table 

2.1. Most models that were developed for a specific style of faulting predict the associated 

displacement vector component (e.g., the MR11 model was developed for reverse faulting and 

predicts vertical displacement). The previously published models for principal faulting are 

assumed to apply to single-stranded principal ruptures; however, three new FDMs combine 

displacements across multi-stranded ruptures. The vector components and participating ruptures 

assumed in the FDMs are discussed separately below. 

2.1 DISPLACEMENT VECTOR COMPONENT 

Figure 2.1 illustrates the vector components that accommodate fault displacement. Post-

earthquake measurements of fault displacement correspond to a specific component. The measured 

component is typically based on the style of faulting; for example, lateral displacement is usually 

measured in strike-slip earthquakes, and vertical displacement is usually measured in reverse and 
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normal earthquakes. The fault-normal (heave) component is rarely measured in strike-slip events 

because it is small for steeply dipping faults. In reverse events, it is rarely reported because it is 

difficult to measure in compressional deformation. The fault-normal component is more easily 

measured in extensional deformation, so it is occasionally reported in normal faulting events. 

Direct measurements of net displacement are rare, and less than 10% of the measurements in the 

FDHI Database (Sarmiento et al., 2021) are for the net component. 

 

Table 2.1.  Summary of displacement definitions used in the FDMs evaluated in this report.  

Model 
Style of Faulting(1) Vector 

Component(2) 
Participating Ruptures(3) Abbreviation(4) 

SS RV NM 

LA23 ✓ ✓ ✓ Net* 
Aggregate 𝐷𝑎𝑔𝑔,𝑁∗ 

Sum-of-Principal 𝐷𝑠𝑝,𝑁∗ 

MEA24 – ✓ – Vertical Single Principal 𝐷𝑝,𝑉 

KEA24 ✓ ✓ ✓ Net* Aggregate 𝐷𝑎𝑔𝑔,𝑁∗ 

CEA25 ✓ – – Net* Sum-of-Principal 𝐷𝑠𝑝,𝑁∗ 

WC94 ✓ ✓ ✓ Varies by style Single Principal 𝐷𝑝,𝑋 

YEA03 – – ✓ Vertical Single Principal 𝐷𝑝,𝑉 

PEA11 ✓ – – Lateral Single Principal 𝐷𝑝,𝐿 

MR11 – ✓ – Vertical Single Principal 𝐷𝑝,𝑉 
(1) SS = Strike-slip; RV = Reverse; NM = Normal. 

(2) Best-estimate data for the Net* component may be incomplete; see text for discussion. 

(3) Aggregate refers to displacements summed across principal and distributed rupture. 

(4) Abbreviation for displacement 𝐷 with subscripts identifying the participating ruptures and 

vector component. 

 

The FDHI Database contains best-estimate net displacement amplitudes for all 

measurement sites. These values are based on direct measurements of the net component when 

available; otherwise, they are calculated from the available measurements. While the true net 

component can be computed as the vector sum of the lateral, fault-normal, and vertical 

components, it is very rare for all three orthogonal components to be measured at an individual 

site. The values of unreported components are assumed to be zero for the purposes of calculating 

the best-estimate net displacement amplitudes; as a result, the calculated values in the FDHI 

Database may systematically underestimate the true net displacement for oblique-slip events. (We 

note that the database includes flags for non-zero but unmeasured components and these calculated 

net displacement values have a lower quality ranking.) 
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Figure 2.1.  Fault displacement vector components. “DS” is dip-slip component. Angle  is the 

fault dip, and angle  is the rake. The net component is the vector sum of the 
lateral, fault-normal, and vertical components. The net component can also be 
calculated from trigonometric ratios using the dip and rake; see text for discussion. 

 

The new FDMs use the FDHI Database, and three new FDMs predict the net component 

of displacement (Table 2.1). We use an asterisk (e.g., Net* or 𝑁∗) to emphasize that the data for 

the best-estimate net component is incomplete in the FDHI Database and this limitation is inherited 

by the models. This can impact the models differently depending on the style of faulting. For 

example, it is generally more common for strike-slip event data sets to report both lateral and 

vertical components, and the fault-normal component is usually negligible for steeply dipping 

faults; therefore, best-estimate net displacement calculations values for strike-slip events are 

usually close to the true net displacement. For normal earthquakes, lateral and fault-normal 

components might be missing in some cases. Finally, for reverse events, both lateral and fault-

normal components are commonly under-reported and the best-estimate (calculated) net 

displacement values in the FDHI Database may under-predict the true net displacement. 

Trigonometric ratios can be used to compute the true net displacement (N) from the best-

estimate net (N*) or vertical (V) displacement predicted by the FDMs in site-specific application: 

 

𝑁 =
𝑁∗

𝑠𝑖𝑛(𝛿)
      (2.1) 

 

𝑁 =
𝑉

𝑠𝑖𝑛(𝛿)𝑠𝑖𝑛(𝜆)
     (2.2) 
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where the fault dip () and rake () are schematically shown on Figure 2.1. (It is noted that 

the  in Figure 2.1 is unrelated to the Box-Cox transformation parameter  in the KEA24 model; 

the use of the same symbol is coincidental.) 

2.2 PARTICIPATING RUPTURES 

Surface rupture characteristics can vary from a single, spatially continuous discrete faults 

to networks of discontinuous fault segments with gaps and step-overs. Fault displacement is 

typically measured on individual ruptures. Figure 2.2 shows an example of a complex surface 

rupture pattern with (sub)parallel principal ruptures and nonuniform spatial distribution of fault 

displacement measurement sites. In previously published models for principal fault displacement, 

principal displacement measurements from all principal rupture segments are projected onto a 

reference line (defined by the nominal along-strike direction of the total rupture), effectively 

treating the measurements as adjacent along a single nominal principal rupture. The new MEA24 

FDM also uses this approach, which is referred to as “single principal” in Table 2.1 

 

 

Figure 2.2.  Example of complex surface rupture pattern (lines) and irregularly spaced displacement 
measurement sites (open and closed circles) from a fictitious earthquake. Reference 
line represents nominal along-strike path of the total rupture. See text for discussion 
on the different displacements that may be summed in the example zone. 
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Alternatively, three new FDMs sum displacements across (sub)parallel ruptures to capture 

the impact of surface rupture complexity on displacement amplitude. Summing the displacements 

was viewed as a more stable metric by some modeler teams to account for complex surface rupture 

effects that are not modeled. The CEA25 model only considers principal displacement 

measurements in the summation, which we refer to as “sum-of-principal” in Table 2.1. The KEA24 

model includes all measurements (principal and distributed), which is referred to as “aggregate.” 

The LA23 modeling team developed models for both aggregate and sum-of-principal. Each team 

(KEA24, CEA25, and LA23) used a unique method to sum the displacements in the example zone 

on Figure 2.2, but all methods aimed to account for irregular spacing of displacement measurement 

sites, which is common in field data sets due to various geologic or logistic factors.  

To better understand the impact of the different displacement summation approaches, an 

FDHI Working Group was convened to review results from six earthquakes. The findings are 

documented in Appendix A. In general, the Working Group found reasonable agreement among 

the different methods. However, direct comparisons between models that predict aggregate and 

principal displacements are not possible, and adjustments between predictions for aggregate and 

principal or sum-of-principal are not available in most models. The exception is the LA23 model, 

which provides formulations for sum-of-principal and aggregate. To provide a rough idea of the 

scaling between sum-of-principal and aggregate displacements, we show the LA23 scaling model 

in Figure 2.3. The scaling is independent of earthquake size and site location in the LA23 model. 

While the scaling in the LA23 model generally agrees with the principal-to-aggregate 

displacement ratios for the six events evaluated in Appendix A, it is specific to the LA23 model 

and should not be applied to other models. 
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Figure 2.3.  Scaling of sum-of-principal displacement (Dsp) with aggregate displacement (Dagg) in 
the LA23 model. Reproduced from Figure A16 in Lavrentiadis and Abrahamson 
(2023). 
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3 Model Formulations and Parameters 

This chapter provides a high-level overview of the formulations, parametrizations, and aleatory 

variability modeling in FDMs. The model equations, coefficients, and details on the model 

development are outside the scope of this discussion and can be found in the source publications 

listed in Table 1.1.  

Fault displacement models predict various displacement metrics. Early models by Bonilla 

et al. (1984), Wells and Coppersmith (1994), and several others developed empirical scaling 

relations between earthquake size and average or maximum displacement (𝐴𝐷 and 𝑀𝐷, 

respectively). More recent models by Youngs et al. (2003), Moss and Ross (2011), and Petersen 

et al. (2011) provide predictions for displacement normalized by the average and/or maximum 

displacement in an earthquake (𝐷 𝐴𝐷⁄  and  𝐷 𝑀𝐷⁄ , respectively). Petersen et al. (2011) also 

provide formulations for the displacement amplitude itself (𝐷). Three of the new FDHI FDMs 

predict displacement 𝐷 (LA23, KEA24, and CEA25), whereas the MEA24 model predicts 

normalized displacements 𝐷 𝐴𝐷⁄  and 𝐷 𝑀𝐷⁄ . Additionally, the LA23 and CEA25 models provide 

predictions for 𝐴𝐷, and LA23 also provides prediction for 𝑀𝐷. Table 3.1 summarizes the 

displacement metrics provided in each model. The definitions of displacement from Table 2.1 are 

repeated for convenience. 

The FDMs evaluated in this report use moment magnitude (𝑴) and/or normalized location 

along-strike of the rupture (𝑥 𝐿⁄ ) as predictor variables. The normalized location 𝑥/𝐿 is a distance 

ratio, where 𝑥 is the length along the surface rupture and 𝐿 is the total surface rupture length. Some 

models use alternative notations for 𝑥 𝐿⁄  (e.g., 𝑙 𝐿⁄  in PEA11, 𝑋 𝐿⁄  in LA23, 𝑈∗ in KEA24, and 

𝑙2𝐿 in CEA25). The location is normalized with respect to the total surface rupture length to 

remove the effects of variable surface rupture lengths. The estimated surface rupture length for a 

given earthquake magnitude and its aleatory variability is handled in the PFDHA integral using 

scaling relations for magnitude and surface rupture length.  

The predictor variables vary based on the displacement metric used in the FDM (Table 

3.1). For example, FDMs that predict the 𝐴𝐷 or 𝑀𝐷 in an earthquake are independent of along-

strike location. An exception is the LA23 model, which uses the prediction at 𝑥 𝐿⁄ = 0.25 as an 

arbitrary reference. Fault displacement models that predict normalized displacements 𝐷 𝐴𝐷⁄  or 

𝐷 𝑀𝐷⁄  are independent of earthquake size. Normalized displacement models are coupled with 
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scaling relations for the normalization variable (𝐴𝐷 or 𝑀𝐷) to capture the effects of earthquake 

size.  

 

Table 3.1.  Summary of metrics provided in fault displacement models and their predictor 
variables.  

Model Metric 
Definition of 

Displacement(1) 
Predictor Variables(2) 

LA23 

𝐴𝐷 𝐷𝑠𝑝,𝑁∗  or 𝐷𝑎𝑔𝑔,𝑁∗  𝑴, 𝑥 𝐿⁄  

𝑀𝐷 𝐷𝑠𝑝,𝑁∗  𝑴, 𝐷(𝑥 𝐿 = 0.25⁄ ) 

𝑀𝐷 𝐷𝑎𝑔𝑔,𝑁∗  𝑴, 𝐷(𝑥 𝐿 = 0.25⁄ ) 

MEA24 

𝐴𝐷 

𝐷𝑝,𝑉 

𝑴 
𝑀𝐷 𝑴 

𝐷 𝐴𝐷⁄  𝑥 𝐿⁄  
𝐷 𝑀𝐷⁄  𝑥 𝐿⁄  

KEA24 𝐷 𝐷𝑎𝑔𝑔,𝑁∗  𝑴, 𝑥 𝐿⁄  

CEA25 
𝐷 

𝐷𝑠𝑝,𝑁∗  
𝑴, 𝑥 𝐿⁄  

𝐴𝐷 𝑴 

WC94 
𝐴𝐷 𝐷𝑝,𝑋 𝑴 

𝑀𝐷 𝐷𝑝,𝑋 𝑴 

YEA03 
𝐷 𝐴𝐷⁄  

𝐷𝑝,𝑉 
𝑥 𝐿⁄  

𝐷 𝑀𝐷⁄  𝑥 𝐿⁄  

PEA11 
𝐷 

𝐷𝑝,𝐿 
𝑴, 𝑥 𝐿⁄  

𝐷 𝐴𝐷⁄  𝑥 𝐿⁄  

MR11 

𝐴𝐷 

𝐷𝑝,𝑉 

𝑴 

𝑀𝐷 𝑴 

𝐷 𝐴𝐷⁄  𝑥 𝐿⁄  
𝐷 𝑀𝐷⁄  𝑥 𝐿⁄  

(1) Definition of response variable 𝐷, 𝐴𝐷, and/or 𝑀𝐷 used in model formulation from Table 2.1.  
(2) Models applicable to multiple styles of faulting use the same predictor variables, but the 
functional forms and/or coefficients vary by style.  

 

The aleatory variability is defined through the statistical distribution used in each FDM. 

Several different statistical distributions are used (e.g., lognormal, gamma, beta, and power-

normal). In most models, the aleatory variability is partitioned into between- and within-event 

components, where the between-event variability is either magnitude-dependent or constant, and 

the within-event variability is location-dependent. Exceptions include the PEA11 models, which 

did not partition the variability, and the LA23 model, in which both terms are magnitude-

dependent. Within-event variability is not applicable to models that predict 𝐴𝐷 or 𝑀𝐷. Separating 

the aleatory variability into between- and within-event components avoids bias towards better-

sampled events. Including magnitude- and location-dependence in the aleatory variability models 

improves hazard estimates because data dispersion is not constant for all magnitudes or locations 
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along the rupture. In models applicable to multiple styles of faulting (LA23 and KEA24), the 

between- and within-event components use different functional forms and/or coefficients for each 

style. The statistical distributions and aleatory components for each FDM are listed in Table 3.2. 

 

Table 3.2.  Summary of fault displacement model formulations and aleatory variability 
components.  

Model Formulation(1) Between-Event(2) Within-Event(3) 

LA23(4) D0.3 ~ Normal 𝑴-dependent 𝑴-dependent 

MEA24 

𝑙𝑜𝑔10(𝐴𝐷) ~ Normal Constant – 

𝑙𝑜𝑔10(𝑀𝐷) ~ Normal Constant – 

D/AD ~ Gamma – 𝑥 𝐿⁄ -dependent 

D/MD ~ Gamma – 𝑥 𝐿⁄ -dependent 

KEA24 (𝐷𝜆 − 1)/𝜆 ~ Normal 𝑴-dependent 𝑥 𝐿⁄ -dependent 

CEA25 ln(D) ~ nEMG 𝑴-dependent 𝑥 𝐿⁄ -dependent 

WC94 
𝑙𝑜𝑔10(𝐴𝐷) ~ Normal Constant – 

𝑙𝑜𝑔10(𝑀𝐷) ~ Normal Constant – 

YEA03 
D/AD ~ Gamma – 𝑥 𝐿⁄ -dependent 

D/MD ~ Beta – 𝑥 𝐿⁄ -dependent 

PEA11(5) 
ln(D) ~ Normal Constant(6)(7) 

ln(D/AD) ~ Normal Constant Constant(7) 

MR11 

𝑙𝑜𝑔10(𝐴𝐷) ~ Normal Constant – 

𝑙𝑜𝑔10(𝑀𝐷) ~ Normal Constant – 

D/AD ~ Gamma – 𝑥 𝐿⁄ -dependent 

D/AD ~ Weibull – 𝑥 𝐿⁄ -dependent 

D/MD ~ Beta – 𝑥 𝐿⁄ -dependent 
(1) Describes response variable and statistical distribution. Variables 𝐷, 𝐴𝐷, and 𝑀𝐷 are 
displacement, average displacement, and maximum displacement, respectively. 𝑛𝐸𝑀𝐺 is 
negative exponentially-modified Gaussian distribution (CEA25), and 𝜆 is Box-Cox transformation 
parameter (KEA24). 
(2) Between-event variability for models that predict 𝐷 𝐴𝐷⁄  or 𝐷 𝑀𝐷⁄  is provided by the 𝐴𝐷 or 
𝑀𝐷 scaling relation and is typically constant. 
(3) Within-event variability for is not applicable for models that 𝐴𝐷 or 𝑀𝐷. 
(4) The LA23 simplified FDM uses an additional 𝑴-dependent within-even term to capture 
aleatory variability on fault segmentation 

(5) Alternative functional forms are provided for elliptical, quadratic, and bilinear profile shapes. 

(6) Error term was not separated. 

(7) Bilinear functional form is 𝑥 𝐿⁄ -dependent. 
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Data transformations are commonly used to simplify statistical modeling, such as when the 

normality of residuals of residuals can be improved or nonlinear relationships can be linearized. 

For example, the Wells and Coppersmith (1994) scaling relations for 𝐴𝐷 and 𝑀𝐷 model the 

aleatory variability with a lognormal distribution by using a common (base 10) log transformation 

with a normal distribution. Two of the new FDHI FDMs use novel data transformations: the LA23 

model uses a simple power transformation with an exponent of 0.3, and the KEA24 model uses a 

Box-Cox transformation, which is also a power transformation, that additionally shifts and scales 

the data. The data transformations used in each model are shown in Table 3.2. 

In most cases, data transformations are not used for normalized displacements (Table 3.2). 

An exception is the Petersen et al. (2011) 𝐷 𝐴𝐷⁄  model, which uses a natural log transformation 

with a normal distribution. In forward application of normalized displacement models, the aleatory 

variability on the 𝐴𝐷 or 𝑀𝐷 should be convolved with the aleatory variability on the 𝐷 𝐴𝐷⁄  or 

𝐷 𝑀𝐷⁄ . Common approaches for convolving statistical distributions include Monte Carlo 

sampling (Moss and Ross, 2011) and numerical integration (A. Zandieh, pers. comm.). Examples 

of both approaches are provided in Supplement B of Sarmiento et al. (2025). 

We use the terms magnitude scaling to describe the relationship between displacement 

amplitude and the earthquake magnitude and 𝑥/𝐿 scaling to describe the relative relationship 

between displacement and the location along the rupture (i.e., the shape of the displacement 

profile). Table 3.3 provides qualitative descriptions of the scaling relationships used in each model.  

The previously published models all use log-linear magnitude scaling. Three of the new 

FDHI FDMs use bilinear or trilinear magnitude scaling (LA23, KEA24, and CEA25). Although 

the MEA24 model uses log-linear magnitude scaling, the nonlinear magnitude scaling in the LA23 

and KEA24 models approaches log-linear for reverse faulting, as discussed in Chapter 5. 

The 𝑥/𝐿 scaling used in each FDM is a modeling decision. In most cases, modelers 

developed empirical displacement profiles from the earthquakes in the FDHI Database (e.g., 

Figure 3.1) and used this information to prescribe an along-strike functional form and develop a 

parametric model. One exception is the MEA24 model, where the 𝑥/𝐿 scaling is based on 

piecewise linear interpolation of pre-computed statistical distribution parameters and thus is non-

parametric. (Alternatively, MEA24 provide regressions for the statistical distribution parameters 

in Moss et al., 2022; however, the interpolation method is preferred by the model developers per 

R. Moss, pers. comm.) Another exception is the LA23 model, in which the shape of the 

displacement profile is determined from simulations in the wavenumber domain (where the 

wavenumber model is based on the FDHI Database), and a space domain functional form with 

consistent taper scaling is provided for forward application. As discussed in Chapter 5, profile 

shapes vary with style of faulting. 

Previous studies have found displacement profiles are commonly asymmetric (Hemphill-

Haley and Weldon, 1999; Manighetti et al., 2005; Wesnousky, 2008; Youngs et al., 2003). Because 

the skewness usually cannot be determined a priori, most model developers “fold” empirical 
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displacement profiles about the rupture midpoint (𝑥 𝐿⁄ = 0.5) and use the folded data sets to 

develop the FDM. This approach leads to symmetrical profile predictions and captures asymmetry 

in the aleatory variability. An exception is the KEA24 model, which used the full (“unfolded”) 

normalized rupture length with the peak displacement located left of the rupture midpoint (i.e., at 

𝑥/𝐿 ≤ 0.5). The KEA24 model thus produces asymmetrical profiles; however, in forward 

applications, right- and left-skew profiles should be equally weighted in most cases, resulting in a 

symmetrical prediction that effectively treats the asymmetry as aleatory variability by 

marginalizing over the location. Additionally, the CEA25 model team provides an alternative 

unfolded formulation for applications where asymmetry is appropriate. 

 

 

(a) 1987 M 6.54 Superstition Hills, California   (b) 1987 M 6.88 Borah Peak, Idaho 

Figure 3.1.  Example empirical displacement profiles showing principal displacements. Normalized 
distance ratio 𝒙/𝑳 is shown on top axis, where 𝒙 is the length along the surface rupture 
and 𝑳 is the total surface rupture length. Note rupture extends beyond measurements 
in the Borah Peak data set. 

 

The 𝑥/𝐿 scaling is parameterized only using the normalized location along the rupture 

length in most FDMs. As a result, profile shapes are self-similar and independent of earthquake 

size in most cases. An exception is the LA23 model, which uses both 𝑴 and 𝑥/𝐿 to determine the 

median profile shape. Although the functional form for the 𝑥/𝐿 scaling in the KEA24 model only 

depends on 𝑥/𝐿, the data transformation used in their model does not preserve a constant scaling 

ratio and thus introduces a dependence on displacement amplitude that produces non-self-similar 

profiles.  

Finally, we note that LA23 provide a model that is applicable to individual segments 

(𝑥𝑠𝑒𝑔/𝐿𝑠𝑒𝑔) and a “simplified FDM without segmentation” that uses the total surface rupture 
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length (𝑥/𝐿). Our focus throughout this report is on their simplified FDM that uses 𝑥 𝐿⁄ , as other 

FDMs are developed for 𝑥 𝐿⁄ . Further discussion on key differences in the LA23 FDMs in forward 

application are provided below. 
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Table 3.3.  Summary of model scaling components.  

Model Metric 

Magnitude Scaling 𝑥 𝐿⁄  Scaling 

Prescribed 
Magnitude Scaling 

Relationship(1) 

Predictor 
Variables 

Prescribed Profile 
Shape(1) 

Folded About 
Midpoint 

Predictor 
Variables 

Self-Similar 
Scaling 

LA23 𝐷 Trilinear 𝑴 Approx. Quadratic(2) Yes 𝑴, 𝑥 𝐿⁄  No(5) 

MEA24 
𝐴𝐷 and 𝑀𝐷 Linear 𝑴 – –  – 

𝐷 𝐴𝐷⁄  and 
𝐷 𝑀𝐷⁄  

– – Approx. Quadratic(3) Yes 𝑥 𝐿⁄  Yes 

KEA24 𝐷 Bilinear 𝑴 Beta Distribution PDF No 𝑥 𝐿⁄  No(6) 

CEA25 𝐷 Bilinear 𝑴 Elliptical Yes(4) 𝑥 𝐿⁄  Yes 

WC94 𝐴𝐷 and 𝑀𝐷 Linear 𝑴 – – – – 

YEA03 
𝐷 𝐴𝐷⁄  and 

𝐷 𝑀𝐷⁄  
– – Linear Yes 𝑥 𝐿⁄  Yes 

PEA11 
𝐷 Linear 𝑴 Bilinear, Quadratic, or 

Elliptical 
Yes 

𝑥 𝐿⁄  
Yes 

𝐷 𝐴𝐷⁄  – – – 

MR11 

𝐴𝐷 and 𝑀𝐷 Linear 𝑴 – – – – 

𝐷 𝐴𝐷⁄  – – 
Approx. Cubic 

Polynomial 
Yes 𝑥 𝐿⁄  Yes 

𝐷 𝑀𝐷⁄  – – Approx. Linear Yes 𝑥 𝐿⁄  Yes 
(1) In semi-log space. 
(2) Profile shape is determined in wavenumber domain. 
(3) Profile shape is determined from pre-computed 𝑥 𝐿⁄ -dependent statistical distribution parameters. 
(4) An unfolded model is also provided. 
(5) Non-self-similar scaling is directly parameterized with 𝑴 in model functional form. 
(6) Magnitude dependence of profile shape is introduced by Box-Cox transformation.  
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The full probability distribution of fault displacement at an 𝑥/𝐿 location includes the 

probability of zero and non-zero displacements. Location-dependent FDMs provide the 

displacement probability distributions for non-zero displacements. The probability of zero 

displacement is handled separately. Zero aggregate displacement occurs when there is a gap in the 

surface rupture without any principal or distributed ruptures (i.e., where 𝐷𝑎𝑔𝑔 = 0), and zero 

principal displacement occurs when there are no principal ruptures at the location (i.e., 𝐷𝑠𝑝 = 0). 

Like other conditional probability of surface rupture models, the gap probability (i.e., 𝑃(𝐺𝑎𝑝), 

which is equivalent to 𝑃(𝐷𝑎𝑔𝑔 = 0)) and zero principal displacement probability (i.e., 

𝑃(𝐷𝑠𝑝 = 0)) scale down the conditional probability of exceedance by 1 −  𝑃(𝐺𝑎𝑝) and 1 −

 𝑃(𝐷𝑠𝑝 = 0), respectively.  

There are two key differences between the LA23 FDM and other models. First, LA23 

provide a model that is applicable to individual segments (𝑥𝑠𝑒𝑔/𝐿𝑠𝑒𝑔) and a “simplified FDM 

without segmentation” that uses the total surface rupture length (𝑥/𝐿). The model for individual 

segments can be used when fault segments can be identified a priori. Second, the LA23 simplified 

FDM is developed from their model for individual segments by treating the number, location, and 

length of fault segments as aleatory variability. Gaps in surface rupture (i.e., where 𝐷𝑎𝑔𝑔 = 0) and 

locations of no principal displacement (i.e., 𝐷𝑠𝑝 = 0) are removed from the simplified FDM and 

handled through separate models for the probability of zero displacement (𝑃(𝐺𝑎𝑝) and 

𝑃(𝐷𝑠𝑝 = 0), respectively). As a result, artifacts of segmentation, such as median displacement 

amplitude tapering at segment endpoints (e.g., Figure 3.1a), are separated from the probability of 

zero displacement. In all other location-dependent FDMs, artifacts of segmentation are captured 

in the within-event variability of the probability of non-zero displacement. 

The LA23 model provides simplified FDMs for aggregate and sum-of-principal 

displacement. When the simplified FDMs are used, the full distribution of displacements (i.e., zero 

and non-zero displacements) should be evaluated to correctly capture the effects of segmentation 

based on the assumptions in their modeling framework. Specifically, the simplified FDM for sum-

of-principal displacement should be scaled by both the 𝑃(𝐺𝑎𝑝) and the 𝑃(𝐷𝑠𝑝 = 0). However, the 

simplified FDM for aggregate displacement only needs to be scaled by their 𝑃(𝐺𝑎𝑝) model 

because zero displacements on principal ruptures are inherently captured in the aggregate value. 

Importantly, the 𝑃(𝐺𝑎𝑝) and the 𝑃(𝐷𝑠𝑝 = 0) models developed by LA23 are not 

compatible with other FDMs in most cases because these are coupled with their segmentation 

model, which forms the basis of their overall FDM. Specifically, the LA23 FDMs were developed 

using data from individual rupture segments, and the within-event variability in their model is 

therefore based on segment data. In the simplified FDMs, a separate additional aleatory variability 

model is used to capture the number, lengths, and locations of segments, along with adjustments 

to the median displacement. Other location-dependent FDMs were developed using data from the 

full rupture length, and segmentation effects are implicitly captured in the within-event aleatory 

variability in those models.  
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4 Data Set Selection and Model Applicability 

This chapter summarizes the data sets used in the development of each FDM. Specifically, we 

summarize the number of events, number of measurements, and magnitude ranges for the models 

evaluated in this report (Table 1.1). Guidance on model applicability is provided at the end of this 

chapter. 

4.1 DATA SET SELECTION 

All four new FDMs used the FDHI Database (Sarmiento et al., 2021). The empirical database was 

developed in collaboration with earthquake geologists, model developers, engineering community 

end-users, and project sponsors through the FDHI Project. The primary goal of the database was 

to support the development of new FDMs by systematically collecting, reviewing, and organizing 

relevant data in a database. The database contains rupture traces and fault displacement 

measurements from 75 global historical surface-rupturing earthquakes. The earthquakes are from 

shallow crustal tectonic environments and include all styles of faulting. 

The FDHI model development teams selected subsets of the FDHI database based on data 

selection criteria for their model. The specific criteria and justification for the excluded data are 

described in the respective model reports. Generally, model teams excluded events based on style 

of faulting (e.g., MEA24 and CEA25) or insufficient spatial distribution or number of 

displacement measurements. Individual measurements with low-quality flags were typically 

excluded, and some model developers selected one measurement data set when alternative data 

sets were available for the same event (e.g., the Hector Mine earthquake). 

The 𝑥 𝐿⁄  scaling component of the models use empirical displacement profiles (i.e., 

displacement amplitude as a function of normalized location along the rupture; Figure 3.1). The 

reference lines used to measure the normalized location can be based on manual or algorithmic 

interpretation of the rupture and/or displacement data. Manual efforts usually consist of a geologist 

determining the nominal rupture trace and projecting displacement measurements onto the trace. 

This approach can be subjective, especially when multiple (sub)parallel ruptures occur. 

Lavrentiadis et al. (2024) and Thomas et al. (2024) recently developed automated methods to 

remove or minimize subjectivity. The Event Coordinate System (ECS) algorithm by Lavrentiadis 
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et al. (2024) generates a reference line based on the spatial distribution of principal surface rupture 

traces and principal displacement measurement amplitudes. The Thomas et al. (2024) algorithm 

uses a least-cost path (LCP) analysis of the spatial distribution of surface rupture traces to create 

the reference line. Both methods use the second generalized coordinate system (GC2) by Spudich 

and Chiou (2015) to transform the event data into an along-strike dimension based on the reference 

line. The ECS coordinates are included in the FDHI Database. The Thomas et al. (2024) 

coordinates are published separately because they were finalized after the FDHI Database was 

released. 

Table 4.1 summarizes the data sets used for 𝑥 𝐿⁄  scaling in the new and previously 

published FDMs evaluated in this report. The new FDMs exclusively used the displacement 

measurements in the FDHI Database for 𝑥 𝐿⁄  scaling. The previously published models used 

various data sets. The CEA25 model (which only applies to strike-slip style of faulting) used the 

LCP-based reference line for the along-strike projection of displacements, whereas the other new 

models used the ECS. Preliminary sensitivity evaluations by G. Lavrentiadis (pers. comm.) and 

Chiou et al. (2023), as well as a more detailed comparison by Thomas et al. (2024), found that 

while the surface rupture lengths derived from the ECS and LCP reference lines were similar for 

all strike-slip events, the LCP reference lines are systematically longer because they are not as 

smooth; however, the impact should not be significant in a PFDHA framework when ruptures are 

floated along a fault system. 

The data sets used for magnitude scaling are shown in Table 4.2. Three of the new FDMs 

(KEA24, CEA25, and LA23) exclusively used the data from the FDHI Database for magnitude 

scaling. The MEA24 model predicts normalized displacements and therefore captures magnitude 

scaling using 𝐴𝐷 or 𝑀𝐷. MEA24 compiled a separate data set of these metrics for reverse events 

using the FDHI Database and other sources. Similarly, the MR11 and YEA03 models also predict 

normalized displacements and thus used different data sets for magnitude and 𝑥 𝐿⁄  scaling. The 

data sets for magnitude scaling are larger than those for 𝑥 𝐿⁄  scaling in the normalized 

displacement models. 
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Table 4.1.  Summary of data sets used in models for 𝒙 𝑳⁄  scaling.  

Model 
Reference 
Line Basis 

Style of 
Faulting(1) 

𝑁 
Events 

Event M Range 
𝑁 

Measurements 
Data Set 

LA23 SCS(2) 

SS 34 5.0 – 7.9 9109 

FDHI RV/RVO 25 4.9 – 8.02 2769 

NM/NMO 15 6.2 – 7.76 8044 

MEA24 ECS RV/RVO 21 5.03 – 8.02 1038 FDHI 

KEA24 ECS 

SS 34 5.2 – 7.9 5446 

FDHI RV/RVO 25 4.9 – 8.02 2123 

NM/NMO 14 6.2 – 7.76 3309 

CEA25 LCP SS 29 6.0 – 7.9 3309 FDHI 

YEA03 Manual NM/NMO 11 6.22 – 7.29 Not Reported 
McCalpin and 

Slemmons (1998) 

PEA11 Manual SS 21 6.3 – 7.9 1666 
Wesnousky (2008) 

subset, plus 9 
PEA11 events 

MR11 Manual RV/RVO 9 5.4 – 7.9 Not Reported 
Wesnousky (2008) 

subset, plus 1 
MR11 event 

(1) SS = Strike-slip; RV = Reverse; RVO = Reverse-oblique; NM = Normal; NMO = Normal-oblique. 
(2) The Segment Coordinate System (SCS) uses the ECS methodology to develop refences lines for 

individual segments. 

 

Table 4.2.  Summary of data sets used in models for magnitude scaling.  

Model Style of Faulting(1) 𝑁 Events Event M Range Data Set 

LA23 

SS 34 5.0 – 7.9 

FDHI RV/RVO 25 4.9 – 8.02 

NM/NMO 15 6.2 – 7.76 

MEA24 RV/RVO 
29 (AD) 
42 (MD) 

4.7 – 8.02 (MD) 
4.7 – 8.02 (MD) 

MEA24(2) 

KEA24 

SS 34 5.2 – 7.9 

FDHI RV/RVO 25 4.9 – 8.02 

NM/NMO 14 6.2 – 7.76 

CEA25 SS 29 6.0 – 7.9 FDHI 

YEA03 NM/NMO 56 5.6 – 8.1 
Wells and Coppersmith 
(1994), AD for all styles 

PEA11 SS 21 6.3 – 7.9 
Wesnousky (2008) subset, 

plus 9 PEA11 events 

MR11 RV/RVO 25 5.4 – 7.9 MR11 MD 
(1) SS = Strike-slip; RV = Reverse; RVO = Reverse-oblique; NM = Normal; NMO = Normal-oblique. 
(2) Events statistics are based on “complete” subsets in MEA24. 
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4.2 MODEL APPLICABILITY 

The applicability conditions for each model, as specified by the model developers, are listed in 

Table 4.3. The recommendations are generally based on the empirical data used to develop the 

model and the modelers’ confidence in extrapolating beyond the data or limiting applicability 

where data are sparse. For example, the LA23 model developers note that the underlying model in 

their FDM is based on wavenumber spectrum analysis that provides a physical basis for magnitude 

scaling and enables extrapolation to smaller and larger magnitudes (Lavrentiadis and Abrahamson, 

2019, 2023). The CEA25 model developers compared the magnitude scaling used in their model 

to 𝐴𝐷 data sets compiled by others and found the scaling was consistent for up to M 8.3 strike-

slip earthquakes. The magnitude range for the PEA11 model is based on personal communication 

with the model developers. The recommended magnitude ranges for all other models are reported 

in the respective reference. All FDMs except KEA24 use a folded profile functional form, 

requiring the normalized location to be ≤ 0.5. 

 

Table 4.3.  Recommended model applicability.  

Model Style of Faulting(1) Magnitude 𝑥 𝐿⁄  

LA23 All 5.0 – 8.5 [0, 0.5] 
MEA24 RV/RVO 4.7 – 8.0 [0, 0.5] 

KEA24 

SS 6.0 – 8.0 
[0, 1](2) RV/RVO 5.0 – 8.0 

NM/NMO 6.0 – 8.0 

CEA25 SS 6.0 – 8.3 [0, 0.5](3) 

YEA03 NM/NMO 5.6 – 8.1(4) [0, 0.5] 
PEA11 SS 6.0 – 8.0  [0, 0.5] 

MR11 RV/RVO 5.5 – 8.0  [0, 0.5] 
(1) SS = Strike-slip; RV = Reverse; RVO = Reverse-oblique; NM = Normal; NMO = Normal-oblique. 
(2) Predicted profile is right-skewed (i.e., peak displacement occurs at 𝑥 𝐿⁄ ≤ 0.5); calculation for 
complimentary location (1 − 𝑥/𝐿) should be equally-weighted in most cases because profile 
asymmetry is not known a priori. 
(3) An alternative right-skewed, unfolded [0,1] formulation is also provided. 
(4) Based on Wells and Coppersmith (1994) displacement – magnitude regression. 
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5 Model Comparisons 

This chapter provides comparisons of the 𝑥 𝐿⁄  scaling, magnitude scaling, and aleatory variability 

in the new and previously published FDMs.  

Direct comparisons between the models are limited by the different definitions of 

displacement used among the models (Table 2.1). Methods to adjust for different participating 

ruptures (i.e., aggregate, sum-of-principal, and single principal) are not available. As discussed in 

Chapter 2.1, the data for the net component are incomplete, which prevents the use of ad hoc 

adjustments for displacement components. For example, the predicted vertical displacements from 

the MR11 and MEA24 models cannot simply be scaled using trigonometric ratios with an assumed 

fault dip to be compatible with models that predict net displacement because the net displacement 

data generally do not capture the fault-normal or dip-slip components in reverse earthquakes. 

For models that have multiple formulations, the comparisons are limited to one or two 

alternatives for brevity. For example, only the results from the PEA11 𝑙𝑛(𝐷) model for their 

elliptical functional form is shown. The YEA03 𝐷/𝑀𝐷 model based on the McCalpin and 

Slemmons (1998) data set is used. Only the MR11 𝐷/𝐴𝐷 Gamma distribution and 𝐷/𝑀𝐷 (Beta 

distribution) model results are shown. The CEA25 results are for their preferred model 

(“Model7.nEMG”). The LA23 results are based on their “simplified FDM,” which is applicable to 

the full rupture (i.e., the segmented model 𝑥𝑠𝑒𝑔 𝐿𝑠𝑒𝑔⁄  is not evaluated), and any adjustments for 

zero displacement are discussed separately for each comparison. 

The normalized displacement models (YEA03, MR11, and MEA24) allow for any 

appropriate displacement – moment magnitude scaling relation. The following are used in the 

calculations herein: 

• YEA03 𝐷/𝐴𝐷: Wells and Coppersmith (1994) 𝑙𝑜𝑔(𝐴𝐷) − 𝑴, all styles of faulting 

• YEA03 𝐷/𝑀𝐷: Wells and Coppersmith (1994) 𝑙𝑜𝑔(𝑀𝐷) − 𝑴, all styles of faulting 

• MR11 𝐷/𝐴𝐷: Moss and Ross (2011), 𝑙𝑜𝑔(𝐴𝐷) − 𝑴 

• MR11 𝐷/𝑀𝐷: Moss and Ross (2011), 𝑙𝑜𝑔(𝑀𝐷) − 𝑴 

• MEA24 𝐷/𝐴𝐷: Moss et al. (2022) 𝑙𝑜𝑔(𝐴𝐷) − 𝑴, “complete” subset 

• MEA24 𝐷/𝑀𝐷: Moss et al. (2022) 𝑙𝑜𝑔(𝑀𝐷) − 𝑴, “complete” subset 
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Results for the normalized models include total aleatory variability (i.e., the aleatory variability 

on the 𝐴𝐷 or 𝑀𝐷 is convolved with the aleatory variability on the 𝐷 𝐴𝐷⁄  or 𝐷 𝑀𝐷⁄ ). 

Our implementation of the MEA24 FDMs has two key assumptions. First, we truncate the 

aleatory variability for the 𝐷/𝑀𝐷 distribution at 1.0. MEA24 models the aleatory variability on 

𝐷/𝑀𝐷 using a Gamma distribution, which is defined on the interval [0, ∞). As a result, it is 

possible to compute or sample a 𝐷/𝑀𝐷 value greater than 1, although such values are not 

physically valid. (See Supplement D in Sarmiento et al., 2025 for further discussion.) Second, the 

𝑥/𝐿 scaling used herein for the MEA24 FDMs is based on piecewise linear interpolation of the 

pre-computed statistical distribution parameters tabulated in Moss et al. (2024). The interpolation 

method is preferred by the MEA24 developers over the regressions in Moss et al. (2022) (R. Moss, 

pers. comm.).  

The KEA24 calculations use the mean model coefficients with equal weighting on right- 

and left-skewed profiles (i.e., equal weighting with the complimentary location 1 − 𝑥/𝐿) to 

produce symmetrical profiles.  

5.1 X/L SCALING 

The 𝑥/𝐿 scaling controls how the predicted displacement varies along the rupture length. The 

functional forms of the 𝑥/𝐿 scaling components in FDMs determine the shape of the median 

displacement profile, including the intensity of displacement amplitude tapering at the ends of 

ruptures. Empirical observations suggest displacements are generally lower at rupture endpoints 

and increase toward the middle of the rupture (e.g., Hemphill-Haley and Weldon, 1999; Biasi and 

Weldon, 2006, Wesnousky, 2008).  

Equal-area mean displacement profiles predicted by each model are shown on Figure 5.1 

for each style of faulting. We use mean profiles instead of median because these more similar to 

empirical displacement profiles, which inherently contain within- and between-event variability. 

Because the LA23 and KEA24 FDMs have non-self-similar scaling, profiles are shown for 𝑴 6 

and 8. The LA23 FDMs for aggregate and sum-of-principal have the same 𝑥/𝐿 scaling, and the 

probability of zero displacement is not included. 

The profiles are area-normalized to remove the effects of magnitude scaling and provide a 

more direct comparison of the profile shapes and end-of-rupture tapering effects. The area-

normalized profiles 𝑓(𝑥) are computed using the following equation:  

 𝑓(𝑥) =
𝐷̅(𝑥)

∫ 𝐷̅(𝑥)𝑑𝑥
1

0

 (5.1) 

where 𝑥 = 𝑥 𝐿⁄  is used for convenience and 𝐷̅(𝑥) is the predicted mean displacement at a given 

𝑥 𝐿⁄ . The integral was approximated using numerical integration with the trapezoidal rule and a 

step size of 0.01 units on Figure 5.1.  
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Figure 5.1.  Comparison of 𝒙 𝑳⁄  scaling using equal-area mean profiles. 
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While details of the comparisons between the profiles on Figure 5.1, some general 

observations can be made. Importantly, the 𝑥/𝐿 scaling varies significantly with style of faulting. 

For example, most new and previously published models predict highly elliptical shapes with steep 

end-of-rupture tapering for strike-slip and normal events. Conversely, the 𝑥/𝐿 scaling for reverse 

events is flatter. In general, the 𝑥/𝐿 scaling for the 𝐷/𝐴𝐷 and 𝐷/𝑀𝐷 alternatives for a given model 

are very similar. The 𝑥/𝐿 scaling in the LA23 𝑴 8 profiles produces large displacements near the 

rupture endpoints (particularly for strike-slip and normal events) due to effects from their 

segmentation model.  

The 𝑥/𝐿 scaling for the new and previously published FDMs are generally similar for 

strike-slip faulting. The KEA24 profile is nearly identical to PEA11 for 𝑴 6 and very similar to 

CEA25 for 𝑴 8. The KEA24 and CEA25 profiles are both elliptical, but the tapering is stronger 

for KEA24 at smaller magnitudes because dependence on displacement amplitude (and therefore 

earthquake magnitude) is introduced by the Box-Cox transform. In the LA23 model, the 𝑥/𝐿 

scaling for strike-slip events is very similar to CEA25 for 𝑴 6; as magnitude increases, the LA23 

profiles flatten, peak displacements migrate toward the rupture endpoints, and the end-of rupture 

tapering steepens and occurs over shorter distances. 

For reverse events, the 𝑥/𝐿 scaling in the new FDHI FDMs is very similar, producing 

nearly flat profiles. In contrast, the MR11 models produced larger displacements at the rupture 

midpoint. Of the new reverse faulting models, LA23 has the weakest end-of-rupture-tapering. The 

magnitude dependence on the 𝑥/𝐿 scaling for reverse faults in LA23 and KEA24 is small.  

Finally, the 𝑥/𝐿 scaling in the FDHI normal faulting models is generally quite different 

from YEA03. The KEA24 normal faulting profiles are elliptical, and the scaling is less sensitive 

to magnitude than in their strike-slip model. The scaling for 𝑴 6 normal events is reasonably 

similar for LA23 and KEA24, but the effects of segmentation in the LA23 model produce larger 

displacements near the rupture endpoints, steep tapering at the rupture ends, and flat scaling in the 

middle of the rupture for 𝑴 8. 

5.2 AVERAGE DISPLACEMENT 

We use average displacement (𝐴𝐷) to demonstrate the magnitude scaling component of the models 

because allows for comparisons between FDMs with different functional forms and modeling 

approaches. For example, 𝑥 𝐿⁄ -independent models that predict 𝐴𝐷 are typically developed from 

regressions of earthquake size on empirical 𝐴𝐷 datasets (e.g., WC94, MR11, MEA24). For 𝑥 𝐿⁄ -

dependent models (e.g., PEA11, LA23, KEA24, CEA25), the 𝐴𝐷 can be calculated by integrating 

the predicted mean displacement profile: 

 

 𝐴𝐷(𝑴)  =  ∫ 𝐷̅(𝑴, 𝑥)𝑑𝑥
1

0
 (5.2) 
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where 𝑥 = 𝑥 𝐿⁄  is used for convenience, and 𝐷̅(𝑴, 𝑥) is the predicted mean displacement for a 

given moment magnitude 𝑴 at a given along-strike location 𝑥 𝐿⁄ . The predicted mean 

displacement is computed by integrating over the aleatory variability (i.e., the probability density 

function, PDF): 

 

 𝐷̅ =  ∫ 𝐷 𝑓𝑝𝑑𝑓(𝐷|𝑴, 𝑥) 𝑑𝐷
∞

0
 (5.3) 

 

where 𝑓𝑝𝑑𝑓(𝐷|𝑴, 𝑥) is the PDF of the model prediction for a given magnitude M and location 

𝑥 𝐿⁄ . The PDF in Equation 5.3 should be based on within-event variability only because this 

controls the median 𝐴𝐷, whereas the between-event variability controls the aleatory variability on 

𝐴𝐷. 

The LA23 and CEA25 models provide formulations for 𝐴𝐷 based on Equation 5.2. We use 

their formulations to calculate the 𝐴𝐷 predictions on Figure 5.2. For the LA23 model, the 

probability of zero displacement is not considered for consistency with common magnitude scaling 

relations, such as WC94. The CEA25 model uses self-similar scaling, so the 𝑥 term in Equation 

5.2 can be integrated out to develop a simple magnitude scaling relation for 𝐴𝐷. LA23 developed 

a parametric model for 𝐴𝐷 from a synthetic dataset generated by evaluating Equation 5.2. The 

KEA24 model recommends computing 𝐴𝐷 per Equation 5.2. The WC94, MR11, and MEA24 

models use a different approach, providing empirical scaling relations for 𝐴𝐷 based magnitude. 

While PEA11 uses the WC94 strike-slip magnitude scaling relation for 𝐴𝐷 in their 𝑙𝑛(𝐷 𝐴𝐷⁄ ) 

FDMs, they do not derive separate formulations for 𝐴𝐷 for their 𝑙𝑛(𝐷) FDMs, so we compute 𝐴𝐷 

using Equation 5.2 for their elliptical 𝑙𝑛(𝐷) model. However, these results include between-event 

variability because the total aleatory variability is not separated into between- and within-event 

components in their 𝑙𝑛(𝐷) models (Table 3.3). By including the between-event variability, the 

PEA11 results on Figure 5.2 are analogous to the mean prediction for 𝐴𝐷, whereas the results for 

the other models are analogous to the median prediction for 𝐴𝐷. 

Figure 5.2 shows how the 𝐴𝐷 scales with magnitude for each FDM. A key feature of most 

of the FDHI FDMs is the use of nonlinear magnitude scaling (Table 3.3; Figure 5.2). The scaling 

is linear in semi-log space for all previously published models. The FDHI models by KEA24 and 

CEA25 use bilinear magnitude scaling with breakpoints at 𝑴 7.0 and 7.1, respectively. The LA23 

uses trilinear scaling with style-independent scaling above the upper breakpoint at 𝑴 7, whereas 

the lower breakpoint and scaling vary with style. The scaling for reverse faulting is linear in 

MEA24 and approaches linear in LA23 and KEA24. 
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Figure 5.2.  Comparison of magnitude scaling for average displacement. Results are shown for the recommended magnitude range of each 
model without extrapolation. Model displacement definitions are identified in parentheses per Table 2.1. 
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Strike-slip events have the steepest scaling in FDMs, and reverse events have the flattest 

scaling. The bilinear and trilinear scaling in the FDHI models for strike-slip and normal faulting 

produce significantly lower average displacements for small and large magnitudes, compared to 

previously published models; however, the predictions are higher near the upper breakpoints (i.e., 

𝑴 ~7). For reverse faulting, the scaling in the FDHI models is steeper than in MR11, which leads 

to lower 𝐴𝐷 predictions at smaller magnitudes and larger predictions at larger magnitudes. 

Different datasets, modeling approaches, and definitions of displacement in the MEA24 model 

lead to differences from the other FDHI 𝐴𝐷 models for reverse faulting. 

While the 𝐴𝐷 predictions in the FDHI models are generally lower than in previously 

published models, 𝑴 ~7 is an exception. The FDHI strike-slip models range from 22% higher than 

WC94 (CEA25) to 37% higher (KEA24). For reverse faulting, the predictions from LA23 and 

KEA24 are 27% higher than MR11; however, the predicted 𝐴𝐷 for M 7 in the MEA24 model is 

nearly identical to the MR11 prediction. The LA23 and KEA24 models for normal faulting are 

almost identical between 𝑴 6.3 and 7.4 and are 42% higher than WC94. The larger predictions for 

𝑴 7 𝐴𝐷 are generally due to different definitions of displacement used in the models (i.e., net 

displacement versus lateral or vertical displacement and single principal versus sum-of-principal 

or aggregate), and the use of nonlinear magnitude scaling, which provides more flexibility to better 

capture the data.  

At larger magnitudes, the 𝐴𝐷 in the FDHI models is lower for strike-slip and normal 

faulting and higher for reverse, relative to the previously published models. For example, the 𝐴𝐷 

for 𝑴 8 in the FDHI models is lower by a factor of about 2 for strike-slip and about 1.3 to 1.7 for 

normal faulting (relative to WC94 strike-slip and all styles, respectively). For reverse faulting, the 

FDHI models are 21% to 88% higher (MEA24 and LA23 sum-of-principal, respectively), 

compared to MR11. 

5.3 MAXIMUM DISPLACEMENT 

Several 𝑥 𝐿⁄ -independent FDMs provide predictions for maximum displacement (𝑀𝐷) developed 

from regressions of earthquake size on empirical 𝑀𝐷 datasets (e.g., WC94, MR11, MEA24). For 

𝑥 𝐿⁄ -dependent FDMs, the 𝑀𝐷 is not readily derived from the model predictions like 𝐴𝐷 (see 

Chapter 5.2 discussion). Instead, the 𝑀𝐷 is implicitly somewhere in the upper tail of the 

displacement probability distribution, and it can occur at any 𝑥/𝐿 location.  

Magnitude scaling relations for 𝑀𝐷 are provided by WC94, MR11, and MEA24. The 

KEA24, CEA25, and PEA11 FDMs do not provide predictions for 𝑀𝐷. LA23 used numerical 

simulation to develop a parametric model for 𝑀𝐷 that is consistent with their overall FDM. We 

use the percentiles (i.e., aleatory quantiles) corresponding to the LA23 median prediction for 𝑀𝐷 

to facilitate a rough approximation of the 𝑀𝐷 “implied” in the KEA24, CEA25, and PEA11 FDMs 
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to allow for comparisons with models that predict 𝑀𝐷. The LA23 𝑀𝐷 model is conditioned on 

the median (transformed) displacement at 𝑥 𝐿⁄ = 0.25 as an arbitrary reference. The probability 

of zero displacement is not included. The LA23 FDMs use a normal distribution to model the 

aleatory variability on (transformed) displacement, so Figure 5.3 shows the number of standard 

deviations (ε) on the left axis and the corresponding percentiles on the right axis for the median 

𝑀𝐷 at 𝑥 𝐿⁄ = 0.25 as a function of magnitude and style of faulting. The total aleatory variability 

for their aggregate FDM for individual segments was used. We used these magnitude–percentile 

pairs to calculate the predicted displacements at 𝑥 𝐿⁄ = 0.25 in the KEA24, CEA25, and PEA11 

FDMs, using the total aleatory variability in those models. 

 

 

Figure 5.3.  Number of standard deviations (𝜺) corresponding to the median prediction for 
maximum displacement in the LA23 FDM for aggregate displacement. Right axis 
shows corresponding percentile rank (i.e., cumulative probability) for the number 
of standard deviations on the left axis for a standard normal distribution. 

 

Figure 5.4 shows how the predicted or implied 𝑀𝐷 scales with magnitude for each model. 

Empirical 𝑀𝐷 data sets are also shown on Figure 5.4 to demonstrate how the median 𝑀𝐷 

predictions and estimations compare with historical observations. For reverse events, we show the 

data set used by MEA24 to develop their regression model. They supplemented the FDHI Database 
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with data from additional events. The aggregate displacement data set developed by LA23 (using 

data from the FDHI Database) is shown; however, we note that the LA23 𝑀𝐷 model is not 

developed by regressing magnitude against these data, but rather a parametric fit of maximum 

displacements computed from their underlying FDM. Reported maximum displacements from 

other large, shallow crustal earthquakes in continental crust, such as the 1931 M 7.92 Kehetuohai, 

China and 1855 𝑴 8.2 Wairarapa, New Zealand strike-slip earthquakes are also shown (Wells and 

Coppersmith, 1994; Manighetti et al., 2020).  

The magnitude scaling for 𝑀𝐷 in the new models is flatter than in the previously published 

models for most magnitudes due to nonlinear magnitude scaling in most of the new models (Table 

3; Figure 5.4). The median maximum displacement estimates in the LA23, KEA24, and CEA25 

models tightly envelope the empirical data, indicating the statistical distributions and magnitude 

scaling used in these models are in reasonable agreement with the empirical data. Importantly, the 

estimates for large magnitudes (𝑴 > 7.5) are in good agreement with the data, which supports the 

use of these models in PFDHA for low probabilities of exceedance that correspond to long return 

periods.   

For reverse faulting, the MEA24 median 𝑀𝐷 predictions are lower than LA23 and KEA24 

results due to the use of different data sets, definitions of displacement, and modeling approaches. 

The MEA24 𝑀𝐷 model was developed by regressing magnitude on a separate collection of 

empirical observations of maximum vertical displacement from individual principal ruptures; 

however, the LA23 𝑀𝐷 model is for net aggregate displacement and is based on their underlying 

FDM that was developed using the FDHI Database. The KEA24 results represent a 𝑀𝐷 estimate 

for net aggregate displacement based on the upper tail predictions from their model.  

The LA23 percentiles for the median MD are used here to provide a rough approximation 

of the 𝑀𝐷 implied in the PEA11, KEA24, and CEA25 models as a first-order validation of the 

shape of the upper tails of these models with respect to empirical data. This approach is not a 

rigorous assessment and imposes aspects of the LA23 model onto the other models that may not 

be applicable. However, it is a useful process for estimating magnitude- and style-specific 

percentiles that roughly correspond to the median 𝑀𝐷 to understand how the models extrapolate 

to longer return periods in PFDHA. 
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Figure 5.4.  Comparison of magnitude scaling using the median prediction for maximum displacement. Results for models denoted with 
asterisks (PEA11, KEA24, and CEA25) are estimates; see text for discussion on estimation methodology. Results are shown for 
the recommended magnitude range of each model without extrapolation. Displacement definitions are identified in parentheses 
per Table 2.1. All data are for non-oceanic shallow crustal earthquakes.  
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5.4 MEDIAN PREDICTIONS 

A series of plots for a broad range of style–𝑴–𝑥 𝐿⁄  scenarios is presented in the discussion on 

aleatory variability in Chapter 5.5.1 (Figures 5.5 through 5.19). The plots include predictions for 

the median (50th percentile). While some general observations can be made with respect to the 

median predictions, the details of the comparisons vary significantly across the scenarios, and 

direct comparisons are complicated by the different definitions of displacement used in among the 

models (Table 2.1). Nonetheless, we note the following trends: 

• The median predictions among the new strike-slip models are within a factor of about 1.5 

to 2 for almost all magnitudes and locations. The differences are largest where data are 

sparse, which is for 𝑴 6 and at the rupture endpoints for all magnitudes. 

• The median predictions among the new reverse models are within a factor of about 1.9 for 

all cases except the rupture endpoints, where the MEA24 median predictions range from 

about 4.5 to 6 times smaller than the other new models. 

• The median predictions among the new normal models are within a factor of about 2 for 

almost all magnitudes and locations. The exception is 𝑴 6 (for which data are sparse), 

where the KEA24 model is about 3 to 6 times smaller than LA23 (aggregate), depending 

on the location. 

• The median predictions in the new strike-slip models are generally similar to the PEA11 

median predictions, with a few exceptions. For moderate and large magnitudes (𝑴 > 6.5), 

the median predictions at the rupture endpoints (𝑥 𝐿 = 0⁄ ) in the new models are 

significantly larger (up to 10x). At the rupture midpoint (𝑥 𝐿 = 0⁄ . 5), the median 

predictions are up to 30% less for 𝑴 8.0. 

• The median predictions in the new reverse models are within a factor of about 2 of the 

range of the MR11 𝐷 𝐴𝐷⁄  and 𝐷 𝑀𝐷⁄  predictions in most cases, with the exception of the 

rupture endpoints (𝑥 𝐿 = 0⁄ ) for smaller magnitudes, where the new model predictions are 

up to 4x smaller. The median predictions for 𝑴 8.0 at the rupture midpoint (𝑥 𝐿 = 0⁄ . 5) 

in the new models range from about 25% to 60% smaller than in the MR11 𝐷 𝑀𝐷⁄  model. 

• The median predictions in the new normal models are generally similar to the range of the 

YEA03 𝐷 𝐴𝐷⁄  and 𝐷 𝑀𝐷⁄  predictions, with a few exceptions. At the rupture endpoints 

(𝑥 𝐿 = 0⁄ ), the median predictions in the new models for 𝑴 6 are up to 30 times smaller, 

and up to 4 times smaller at larger magnitudes. For larger magnitudes at the rupture 

midpoint (𝑥 𝐿 = 0⁄ . 5), the median predictions in the new models are reduced by up to 

50%. 
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5.5 ALEATORY VARIABILITY 

The aleatory variability is defined through the statistical distribution used in each FDM. As 

discussed in Chapter 3 and summarized in Table 3.2, the aleatory variability is partitioned into 

between- and within-event components in most models. The aleatory variability comparisons 

below focus on 𝑥 𝐿⁄ -dependent FDMs (Table 3.1). In other words, we do not evaluate the 

variability on models that predict 𝐴𝐷 or 𝑀𝐷. 

Direct comparisons of the aleatory variability between FDMs are not straightforward 

because different statistical distributions and data transformations are used among the models 

(Table 3.2). While multiple FDMs use normal distributions (e.g., PEA11, LA23, KEA24), these 

models also use different data transformations, so the standard deviations are in different units; 

although the coefficient of variation could be used to standardize the variability in these models, 

statistical measures like standard deviation or coefficient of variation are not meaningful for 

skewed distributions (e.g., Gamma or nEMG). Instead, the aleatory variability is best compared 

using probability functions or dot charts for specific percentiles.  

We present cumulative distribution functions (CDFs) for a set of style–𝑴–𝑥 𝐿⁄  scenarios, 

along with dot charts for various percentiles, to compare the shape and spread of the aleatory 

variability among the models. Probability of exceedance curves are also provided to demonstrate 

the impact of the aleatory variability modeling components in hazard space.  

5.5.1 Cumulative Distributions and Percentiles 

The cumulative displacement probability (CDF) curves compare the shape and variability over the 

full range of the model predictions, while the dot plots provide a percentile-based measure of the 

relative size of the aleatory variability among the models. A series of plots on Figures 5.5 through 

5.9 show CDF curves (top panel) and percentile dot plots (bottom panel) for models applicable to 

strike-slip faults for magnitudes 6.0, 6.8, 7.2, 7.7, and 8.0, respectively. Three 𝑥 𝐿⁄  locations are 

evaluated on each plot (0, 0.25, and 0.5), and the 5th, 16th, 50th (median), 84th, and 95th percentile 

predictions are shown. Similar figures for reverse faulting (Figures 5.10 through 5.14) and normal 

faulting (Figures 5.15 through 5.19) are also provided. For the LA23 results, the probability of 

zero displacement is not included. 

Although the details of the comparisons vary significantly across the scenarios, some 

general observations can be made for the strike-slip models (Figures 5.5 through 5.9), disregarding 

effects of the different definitions of displacement used in among the models: 

• The 95th percentile predictions in the new models are generally smaller than in the PEA11 

model. Exceptions include the rupture endpoints (𝑥 𝐿 = 0⁄ ), where the new model 

predictions are significantly larger (up to 9x) and, importantly, at larger magnitudes, where 
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the new model predictions are significantly smaller. For example, the 95th percentile 

prediction for 𝑴 8 at the rupture midpoint in the PEA11 model is 40 m, but it is only 15 m 

in KEA24. 

• The 95th percentile predictions among the new models are within a factor of 2.7 for all 

cases. The predictions are within a factor of 1.1 to 1.2 for moderate and large magnitudes 

(𝑴 > 6.5) at locations other than the rupture endpoint.  

• The 5th percentile predictions among the new models are within a factor of about 4.5 for 

most cases. The heavy left tail in the new models leads to 5th percentile predictions that are 

less than 0.01 m for small magnitudes. 

The model predictions for reverse faulting are more similar to each other, with the 

following general observations (Figures 5.10 through 5.14), again disregarding effects of the 

different definitions of displacement used in among the models: 

• The 95th percentile predictions in the new models are within a factor of about 2.5 of the 

range of the MR11 𝐷 𝐴𝐷⁄  and 𝐷 𝑀𝐷⁄  predictions in most cases. The 95th percentile 

MEA24 predictions are less than MR11 in most cases. 

• The 95th percentile predictions among the new models are within a factor of 2 for almost 

all cases. The exception is the rupture endpoint for moderate and large magnitudes (𝑴 > 

6.5), where the MEA24 95th percentile predictions are roughly 50% to 75% other new 

models. 

• The 5th percentile predictions among the new models are within a factor of about 2.5 for 

most cases; the exception is the MEA24 𝐷 𝑀𝐷⁄  model, for which the 5th percentile rupture 

endpoint predictions are more than 10 times smaller than the other new models. 

Finally, the model predictions for normal faulting also vary significantly across the 

scenarios, with the following general observations (Figures 5.15 through 5.19), again disregarding 

effects of the different definitions of displacement used in among the models: 

• The 95th percentile predictions in the new models are smaller than YEA03 𝐷 𝐴𝐷⁄  and 

𝐷 𝑀𝐷⁄  predictions in almost all cases. At larger magnitudes, the new model predictions 

are significantly smaller. For example, the 95th percentile prediction for 𝑴 8 at the rupture 

midpoint in the YEA03 𝐷 𝐴𝐷⁄  model is 37 m, but it is only 9 m in KEA24. 

• The 95th percentile predictions among the new models are within a factor of 1.2 to 1.5 for 

almost all cases except the rupture endpoints, where the KEA24 predictions are generally 

about 3 times smaller than the LA23 (aggregate) predictions. 

• The 5th percentile predictions among the new models are within a factor of about 5 for most 

cases. The heavy left tail in the new models leads to 5th percentile predictions that are less 

than 0.01 m for small magnitudes. 
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(a) Cumulative displacement probability curves.  

 

 
(b) Percentile displacement plots. 

 

Figure 5.5.  Comparison of aleatory variability for 𝑴 6.0 strike-slip events. Displacement definitions in parentheses are explained in Table 
2.1.   
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(a) Cumulative displacement probability curves.  

 

 
(b) Percentile displacement plots. 

 

Figure 5.6.  Comparison of aleatory variability for 𝑴 6.8 strike-slip events. Displacement definitions in parentheses are explained in Table 
2.1.   
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(a) Cumulative displacement probability curves.  

 

 
(b) Percentile displacement plots. 

 

Figure 5.7.  Comparison of aleatory variability for 𝑴 7.2 strike-slip events. Displacement definitions in parentheses are explained in Table 
2.1.   
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(a) Cumulative displacement probability curves.  

 

 
(b) Percentile displacement plots. 

 

Figure 5.8.  Comparison of aleatory variability for 𝑴 7.7 strike-slip events. Displacement definitions in parentheses are explained in Table 
2.1.   
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(a) Cumulative displacement probability curves.  

 

 
(b) Percentile displacement plots. 

 

Figure 5.9.  Comparison of aleatory variability for 𝑴 8.0 strike-slip events. Displacement definitions in parentheses are explained in Table 
2.1.   
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(a) Cumulative displacement probability curves.  

 

 
(b) Percentile displacement plots. 

 

Figure 5.10. Comparison of aleatory variability for 𝑴 6.0 reverse events. Displacement definitions in parentheses are explained in Table 2.1.   
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(a) Cumulative displacement probability curves.  

 

 
(b) Percentile displacement plots. 

 

Figure 5.11. Comparison of aleatory variability for 𝑴 6.8 reverse events. Displacement definitions in parentheses are explained in Table 2.1.   
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(a) Cumulative displacement probability curves.  

 

 
(b) Percentile displacement plots. 

 

Figure 5.12. Comparison of aleatory variability for 𝑴 7.2 reverse events. Displacement definitions in parentheses are explained in Table 2.1.   
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(a) Cumulative displacement probability curves.  

 

 
(b) Percentile displacement plots. 

 

Figure 5.13. Comparison of aleatory variability for 𝑴 7.7 reverse events. Displacement definitions in parentheses are explained in Table 2.1.   
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(a) Cumulative displacement probability curves.  

 

 
(b) Percentile displacement plots. 

 

Figure 5.14. Comparison of aleatory variability for 𝑴 8.0 reverse events. Displacement definitions in parentheses are explained in Table 2.1.   



 

 

 

45 

 

 

 

 
(a) Cumulative displacement probability curves.  

 

 
(b) Percentile displacement plots. 

 

Figure 5.15. Comparison of aleatory variability for 𝑴 6.0 normal events. Displacement definitions in parentheses are explained in Table 2.1.   
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(a) Cumulative displacement probability curves.  

 

 
(b) Percentile displacement plots. 

 

Figure 5.16. Comparison of aleatory variability for 𝑴 6.8 normal events. Displacement definitions in parentheses are explained in Table 2.1.   
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(a) Cumulative displacement probability curves.  

 

 
(b) Percentile displacement plots. 

 

Figure 5.17. Comparison of aleatory variability for 𝑴 7.2 normal events. Displacement definitions in parentheses are explained in Table 2.1.   
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(a) Cumulative displacement probability curves.  

 

 
(b) Percentile displacement plots. 

 

Figure 5.18. Comparison of aleatory variability for 𝑴 7.7 normal events. Displacement definitions in parentheses are explained in Table 2.1.   
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(a) Cumulative displacement probability curves.  

 

 
(b) Percentile displacement plots. 

 

Figure 5.19. Comparison of aleatory variability for 𝑴 8.0 normal events. Displacement definitions in parentheses are explained in Table 2.1.  
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5.5.2 Exceedance Probabilities 

Probability of exceedance curves (i.e., complementary cumulative distribution functions) are 

shown for 𝑴 6, 7, and 8 for the rupture midpoint (𝑥 𝐿⁄ = 0.5; Figure 5.20) and endpoint (𝑥 𝐿⁄ =

0; Figure 5.21) to demonstrate the impact of the aleatory variability modeling components in 

hazard space. The LA23 results include the full distribution of displacements (i.e., zero and non-

zero displacements). Incorporating zero displacements scales down the probability of exceedance.  

While the details of the comparisons vary significantly and are complicated by the different 

definitions of displacement used in among the models (Table 2.1), some generalizations can be 

made: 

• The FDHI models are most similar for 𝑴 7 strike-slip and normal events, and 𝑴 8 strike-

slip events, where the 99th percentile predictions are within 15% for the rupture midpoint.  

• The 99th percentile (10-2) predictions for the rupture midpoint in the new FDHI models are 

within a factor of about 1.5 in most cases (Figure 5.20). Exceptions include 𝑴 6, where the 

strike-slip and reverse results in the FDHI models span factors of three and two, 

respectively, and 𝑴 7 reverse faulting where the MEA24 results are roughly half of the 

predictions in the other FDHI models. The MEA24 results are lower due to several factors, 

including the use of different datasets, modeling approaches, and definitions of 

displacement in their magnitude scaling models, which produces flatter magnitude scaling 

(Figures 5.2 and 5.4). Furthermore, the 𝑥/𝐿 scaling in MEA24 consistently produces lower 

displacements at the rupture midpoint and endpoint compared to other models (Figure 5.1). 

• At the rupture endpoints (Figure 5.21), the 99th percentile predictions in the FDHI models 

are within a factor of three for strike-slip and normal events and within a factor of about 

two for reverse faulting. 

• Compared to previously published models, the 99th percentile rupture midpoint 

displacements in the FDHI models for strike-slip and normal faulting are two to six times 

smaller than in previously PEA11 and YEA03, respectively (Figure 5.20). For reverse 

faulting, the FDHI model predictions vary from within about 5% to as much as three times 

less than the MR11 predictions (Figure 5.20). 

• Compared to PEA11, the 99th percentile rupture endpoint displacements in the FDHI strike-

slip models for are about three to five times larger due to larger mean predictions at the 

rupture endpoints (Figure 5.1) and up to eight times larger for M 7 due to nonlinear 

magnitude scaling (Figure 5.2).  

• The FDHI models for reverse faulting generally span the range of the MR11 𝐷/𝐴𝐷 and 

𝐷/𝑀𝐷 model predictions at the rupture endpoint for the 99th percentile (Figure 5.21).  
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• The FDHI models for normal faulting produce 99th percentile range at the rupture endpoint 

that are three to ten times less than YEA03 due to reduced mean predictions at the rupture 

endpoints (Figure 5.1) and significantly lower between-event aleatory variability. 

 

 
 

 
 

 

Figure 5.20. Comparison of probability of exceedance curves for 𝑴 6 (top), 𝑴 7 (middle), and 
𝑴 8 (bottom) at rupture midpoint (𝒙 𝑳⁄ = 𝟎. 𝟓). Displacement definitions in 
parentheses are explained in Table 2.1. 
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Figure 5.21. Comparison of probability of exceedance curves for 𝑴 6 (top), 𝑴 7 (middle), and 
𝑴 8 (bottom) at rupture endpoint (𝒙 𝑳⁄ = 𝟎). Displacement definitions in 
parentheses are explained in Table 2.1. 
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6 Epistemic Uncertainty 

This chapter summarizes the within-model epistemic uncertainty in the new FDMs. All models 

provide methods for evaluating within-model epistemic uncertainty to some extent, and this is a 

notable feature of the FDHI models. While each model handles epistemic uncertainty differently, 

it is generally captured with alternative model coefficients or quantified uncertainty on model 

predictions. Each model is discussed separately below. Comparisons are provided for broad range 

of scenarios (𝑴 6, 7, and 8 at the rupture midpoint and endpoint) in the form of exceedance 

probabilities to demonstrate the impact of the epistemic uncertainty in hazard space. 

We note that incorporating additional epistemic uncertainty (beyond what is currently 

provided in the models) may be warranted in some applications. Although the FDHI models were 

developed independently using different modeling approaches, and all models provide methods to 

capture at least some within-model epistemic uncertainty, the total uncertainty may still be 

underestimated. Future work evaluating between-model epistemic uncertainty could address these 

limitations. 

6.1 LA23 MODEL 

The LA23 model provides a parametric model for the epistemic uncertainty on the median 

aggregate displacement (𝜇𝑎𝑔𝑔). Specifically, they provide a magnitude- and style-dependent 

standard deviation for the median aggregate displacement (in transformed units; 𝜎𝜇−𝑎𝑔𝑔), as shown 

on Figure 6.1. The epistemic uncertainty is largest for small magnitudes and normal faulting 

events, smallest at 𝑴 7.1, and independent of style at 𝑴 >7.1. 

Figures 6.2 through 6.7 compare the epistemic uncertainty on the median aggregate 

displacement for the rupture endpoint (𝑥 𝐿 = 0⁄ ) and midpoint (𝑥 𝐿 = 0⁄ . 5), respectively, for 𝑴 

6, 7, and 8 in the form of probability of exceedance curves for strike-slip, reverse, and normal 

events. Curves corresponding to the 5th and 95th percentile predictions for the median aggregate 

displacement are shown, along with the 50th percentile (i.e., without epistemic uncertainty). The 

median aggregate displacement adjusted for epistemic uncertainty is calculated as: 

 

 𝜇𝑎𝑔𝑔−𝑒𝑝𝑖 = 𝜇𝑎𝑔𝑔 + Φ−1(𝑝) × 𝜎𝜇−𝑎𝑔𝑔 (6.1) 
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where Φ−1(𝑝) is the inverse standard normal cumulative distribution function for the percentile 𝑝 

(i.e., the number of standard deviations corresponding to the percentile) and the exceedance 

probabilities are evaluated for 𝐷0.3~𝑁(𝜇𝑎𝑔𝑔−𝑒𝑝𝑖, 𝜎𝑎𝑔𝑔). The results include the full distribution of 

displacements (i.e., 𝑃(𝐺𝑎𝑝) is included to capture the probability of zero displacement). 

Incorporating zero displacements scales down the probability of exceedance. Uncertainty in the 

gap probability is not provided, so the 5th, 95th, and median (50th) percentile curves are scaled down 

by the same amount.    

The impact of including epistemic uncertainty is largest for small magnitudes (Figure 6.1). 

For the 𝑴 6 cases, the 5th/95th percentiles span a factor of about two to five at a 10-2 probability of 

exceedance, depending on style of faulting and 𝑥 𝐿⁄  location. For the 𝑴 7 and 8 cases, the span 

ranges from about 1.25 to 1.4. 

 

 

 

Figure 6.1.  LA23 epistemic uncertainty model for the predicted median aggregate 
displacement in transformed units (𝝁𝒂𝒈𝒈). 
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Figure 6.2.  Comparison of LA23 within-model epistemic uncertainty at rupture endpoints for strike-slip events. 

 

   
 

Figure 6.3.  Comparison of LA23 within-model epistemic uncertainty at rupture midpoints for strike-slip events.
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Figure 6.4.  Comparison of LA23 within-model epistemic uncertainty at rupture endpoints for reverse events. 

 

   
 

Figure 6.5.  Comparison of LA23 within-model epistemic uncertainty at rupture midpoints for reverse events.
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Figure 6.6.  Comparison of LA23 within-model epistemic uncertainty at rupture endpoints for normal events. 

 

   
 

Figure 6.7.  Comparison of LA23 within-model epistemic uncertainty at rupture midpoints for normal events.
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6.2 MEA24 MODEL 

MEA24 provide alternative regression coefficients for their 𝐴𝐷 and 𝑀𝐷 models, which are 

compared in detail in Moss et al. (2022). Their 𝐷/𝐴𝐷 and 𝐷/𝑀𝐷 models provide between-model 

epistemic uncertainty. The alternative regression coefficients in their 𝐴𝐷 and 𝑀𝐷 models are based 

on their full empirical dataset and a subset of the data that correspond to datasets considered to be 

more complete. Both complete subsets have lower aleatory variability. 

Figures 6.8 and 6.9 compare the epistemic uncertainty in the MEA24 model for the rupture 

endpoint (𝑥 𝐿 = 0⁄ ) and midpoint (𝑥 𝐿 = 0⁄ . 5), respectively, for 𝑴 6, 7, and 8 in the form of 

probability of exceedance curves. The 𝐷/𝐴𝐷 median predictions (i.e., a 0.5 probability of 

exceedance) are similar for both 𝐴𝐷 models and higher than the 𝐷/𝑀𝐷 median predictions for all 

magnitudes and both 𝑥 𝐿⁄  locations. The 𝐷/𝑀𝐷 median predictions using the “complete” 𝑀𝐷 

subset are about two to three times higher than with the “full” dataset. 

With respect to the within-model epistemic uncertainty, the 99th percentile (i.e., a 10-2 

probability of exceedance) predictions for the 𝐷/𝐴𝐷 alternatives are closer than the 𝐷/𝑀𝐷 

alternatives. In both cases, spread increases with magnitude and the spread is larger at rupture 

midpoint. The results for the 𝐷/𝐴𝐷 alternatives are within about 8% (𝑴 6, 𝑥 𝐿 = 0⁄ ) to about 17% 

(𝑴 8, 𝑥 𝐿 = 0⁄ . 5). The results for the 𝐷/𝑀𝐷 alternatives are within about 7% (𝑴 6, 𝑥 𝐿 = 0⁄ ) to 

about 29% (𝑴 8, 𝑥 𝐿 = 0⁄ . 5).  

With respect to the between-model epistemic uncertainty, the 𝐷/𝑀𝐷 99th percentile 

predictions for the rupture endpoint about 10% higher than 𝐷/𝐴𝐷 for all magnitudes, regardless 

of the 𝑀𝐷 and 𝐴𝐷 model used. At the rupture midpoint, regardless of magnitude, the 𝐷/𝑀𝐷 and 

𝐷/𝐴𝐷 99th percentile results are nearly identical for when the full 𝑀𝐷 or 𝐴𝐷 dataset is used, and 

the 𝐷/𝑀𝐷 results are about 10% lower than 𝐷/𝐴𝐷 results when the complete subset is used. 
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Figure 6.8.  Comparison of MEA24 within- and between-model epistemic uncertainty at rupture endpoints. Legend applies to all. 

 

 
  

 

Figure 6.9.  Comparison of MEA24 within- and between-model epistemic uncertainty at rupture midpoints. Legend applies to all.
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6.3 KEA24 MODEL 

The KEA24 model was developed using Bayesian regression. As a result, the model coefficients 

are defined by posterior distributions, which provide the full within-model epistemic uncertainty. 

The KEA24 developers provide 1000 sets of correlated coefficients sampled from the posterior 

distributions for each style of faulting. The full epistemic uncertainty can be evaluated by 

computed the hazard for each set.  

The KEA24 developers also provide a simplified approach to estimate the within-model 

epistemic uncertainty by numerically estimating the uncertainty on the predictions for the median 

(𝜇) and standard deviation (𝜎𝑇). Pre-computed standard deviations on the median and standard 

deviation (𝜎𝜇 and 𝜎𝜎𝑇
, respectively) are provided by KEA24 for a set of scenarios (style, 𝑴, 𝑥 𝐿⁄ ), 

and linear interpolation is used for other scenarios. The pre-computed standard deviations are 

shown on Figure 6.10 (𝜎𝜇) and Figure 6.11 (𝜎𝜎𝑇
). The values are largest where data are sparse, 

such as small magnitude strike-slip and normal faulting events. In forward application, these 

standard deviations can be used to generate a scaled backbone model, and the epistemic uncertainty 

can be captured in a logic tree by using a three-point discrete approximation for a normal 

distribution (Al Atik and Youngs, 2014; Keefer and Bodily, 1983). Figure 6.12 shows the logic 

tree implementation.  

Figures 6.13 through 6.18 shows the within-model epistemic uncertainty for the rupture 

endpoint (𝑥 𝐿 = 0⁄ ) and midpoint (𝑥 𝐿 = 0⁄ . 5), respectively, for 𝑴 6, 7, and 8 in the form of 

probability of exceedance curves for strike-slip, reverse, and normal events. Each figure shows the 

full epistemic uncertainty by evaluating 1000 sets of correlated model coefficients and the 

estimated epistemic uncertainty using the scaled backbone approach. The mean for each method 

is shown, along with the mean without any epistemic uncertainty (using median coefficients). As 

discussed in the Electronic Supplement to Kuehn et al. (2024), the mean curve developed from the 

scaled backbone approach captures the full epistemic uncertainty very well for most cases. 

While the impact of including epistemic uncertainty is largest for small magnitude strike-

slip and normal events and smallest for 𝑴 ~7 reverse and strike-slip events, the details vary 

significantly across the scenarios. For example, the full epistemic uncertainty spans a factor of 

over 300 at a 10-2 probability of exceedance for a 𝑴 6 strike-slip at the rupture endpoint (𝑥 𝐿⁄ = 0; 

Figure 6.13) but only a factor of about 2.5 at the midpoint of a 𝑴 7 strike-slip event (𝑥 𝐿⁄ = 0.5; 

Figure 6.14). The full epistemic uncertainty is narrowest for reverse events, spanning a factor of 

roughly 3 to 5 at a 10-2probability of exceedance regardless of magnitude or 𝑥 𝐿⁄  location (Figures 

6.15 and 6.16). The full epistemic uncertainty is widest for normal events, spanning a factor of 

almost 1000 at a 10-2 probability of exceedance for a 𝑴 6 at the rupture endpoint (Figure 6.17) and 

more than four at the midpoint of a 𝑴 7 event (Figure 6.18). 
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Figure 6.10. KEA24 estimated epistemic uncertainty on the predicted median (𝝁) in Box-Cox transformation units. 

 

   
 

Figure 6.11. KEA24 estimated epistemic uncertainty on the predicted standard deviation (𝝈𝑻) in Box-Cox transformation units. 
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Figure 6.12. Logic tree for capturing epistemic uncertainty in median prediction 𝝁 and standard 
deviation 𝝈𝑻 in KEA24 model. 
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Figure 6.13. Comparison of KEA24 within-model epistemic uncertainty at rupture endpoints for strike-slip events. Legend applies to all. 

 

   
 

Figure 6.14. Comparison of KEA24 within-model epistemic uncertainty at rupture midpoints for strike-slip events. Legend applies to all. 
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Figure 6.15. Comparison of KEA24 within-model epistemic uncertainty at rupture endpoints for reverse events. Legend applies to all. 

 

   
 

Figure 6.16. Comparison of KEA24 within-model epistemic uncertainty at rupture midpoints for reverse events. Legend applies to all.
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Figure 6.17. Comparison of KEA24 within-model epistemic uncertainty at rupture endpoints for normal events. Legend applies to all. 

   
 

Figure 6.18. Comparison of KEA24 within-model epistemic uncertainty at rupture midpoints for normal events. Legend applies to all. 
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6.4 CEA25 MODEL 

The CEA25 model provides alternative model coefficients based on the statistical uncertainty for 

the magnitude scaling breakpoint (𝑚𝑏) in their model. Specifically, they provide correlated model 

coefficients for four magnitude breakpoints. Their preferred model places the breakpoint at 𝑴 7.1, 

and the three alternatives use breakpoints at 𝑴 6.4, 6.75, and 7.32. Recommendations on epistemic 

weighting for the alternatives are not provided by CEA25. In addition to alternatives for the nEMG 

distribution, the CEA25 team also developed models for using other statistical distributions (Chiou 

et al., 2023). The nEMG distribution is preferred by the CEA25 model developers and the others 

are not evaluated here. 

Figures 6.19 and 6.20 compare the predictions from each alternative magnitude scaling 

model for the rupture endpoint (𝑥 𝐿 = 0⁄ ) and midpoint (𝑥 𝐿 = 0⁄ . 5), respectively, for 𝑴 6, 7, 

and 8 in the form of probability of exceedance curves. The impact of the different models varies 

by magnitude and is independent of location. Specifically, the smaller magnitude breakpoints 

produce higher hazard for larger magnitude events, and vice-versa. At the 99th percentile (i.e., a 

10-2 probability of exceedance) the displacements in the different models vary by factors of about 

1.25, 1.1, and 2.15 for 𝑴 6, 7, and 8, respectively. 
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Figure 6.19. Comparison of CEA25 within-model epistemic uncertainty at rupture endpoints. 

 

   
 

Figure 6.20. Comparison of CEA25 within-model epistemic uncertainty at rupture midpoints.  



68 

 

7 Summary 

Four new fault displacement models (FDMs) were developed for principal ruptures through the 

FDHI Project. The models provide probability distributions for principal or aggregate 

displacement as a function of moment magnitude (𝑴), normalized location along rupture length 

(𝑥 𝐿⁄ ), and style of faulting. All models are applicable between 𝑴 6.0 and 8.0, where most of the 

empirical data exist, but some are applicable to lower or higher magnitudes. Two models are 

applicable to all styles of faulting (LA23 and KEA24), whereas the MEA24 and CEA25 models 

are applicable to reverse and strike-slip faulting, respectively. Additionally, a new surface rupture 

length model by Lavrentiadis et al. (2023) can be used to convert normalized rupture locations to 

absolute lengths for practical applications. 

The new FDMs are a significant improvement over previously published models in several 

ways: 

1. The models use a new, project-specific database developed from an extensive and 

systematic data quality review in coordination with the model developers. The use of a 

common and comprehensive database makes individual models more stable and 

comparisons between models more meaningful. 

2. The models include magnitude scaling breakpoints to capture nonlinear magnitude scaling 

where supported by the data. Previously published models used loglinear scaling. 

3. The aleatory variability modeling is significantly improved. For example, most new models 

partition the aleatory variability into between- and within-event components, which avoids 

bias towards better-sampled events. The aleatory variability models are magnitude- or 𝑥 𝐿⁄ -

dependent, which improves hazard estimates because data dispersion is not constant for all 

magnitudes or locations along the rupture. Non-lognormal statistical distributions are 

supported by the data and are used in all new models. 

4. Upper-trail displacement predictions in the new models are in better agreement with 

empirical observations of maximum displacement, which is driven by a combination of an 

expanded database and improvements to the aleatory variability modeling and magnitude 

scaling in the FDHI models.  

5. All new models provide methods to capture within-model epistemic uncertainty. The LA23 

model estimates the statistical uncertainty on the median prediction. MEA24 provides 
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alternative coefficients for their magnitude scaling models, and they also offer two different 

𝑥 𝐿⁄ -dependent FDMs (which is a form of between-model epistemic uncertainty). KEA24 

provides the full epistemic uncertainty in their model with the posterior distributions of the 

coefficients. The CEA25 model provides alternative coefficients based on different 

magnitude scaling models. 

6. Finally, developing models through a coordinated research program allowed for extensive 

interaction and fruitful technical discussions between modeling teams and database 

developers that improved individual models and would otherwise be unavailable on an 

isolated team. 

This report provides a comparison of the four new FDMs and four previously published 

FDMs. Model information and predictions are presented in several ways in this report to provide 

a comprehensive comparison of the FDMs. For example, tabulated summaries of the predictor 

variables and aleatory variability modeling are provided in Chapter 3. Predicted displacement 

profiles and magnitude scaling with average displacement are shown in Chapter 5. Maximum 

displacements are also addressed. Because the new models use different statistical distributions, 

aleatory variability is compared with probability functions and dot charts for specific percentiles 

in Chapter 5.5. A broad range of style, magnitude, and 𝑥 𝐿⁄  scenarios are evaluated. The spread of 

the 5th/95th percentile predictions on the dot charts shows the relative size of the aleatory variability 

among the models. Probability of exceedance curves are also provided in Chapter 5.5 to show the 

results in hazard space. Finally, the impact of within-model epistemic uncertainty is evaluated in 

Chapter 6 for each new model with exceedance probability curves for a range of scenarios. 

Each FDM consists of three key elements: (1) the prescribed shape of the median profile; 

(2) scaling of the displacement with magnitude; and (3) the aleatory variability model. These are 

technical decisions made by the model developers that lead to differences in the model results. For 

example, the end-of-rupture tapering in the profile shape can lead to significant differences in 

predictions within ~15% of the rupture endpoints. The nonlinear magnitude scaling in the new 

models for strike-slip and normal faulting leads to significantly lower median displacements at the 

magnitude extremes (i.e., 𝑴 5.0 and 8.5) relative to the previously published models that use 

loglinear scaling. All new FDMs use non-lognormal distributions with broad lower tails and 

narrow upper tails that lead to larger model-to-model variation at lower percentiles. 

The median predictions among the new FDHI models are within a factor of about 2 for 

most styles, magnitudes, and 𝑥 𝐿⁄  locations. For small magnitudes at the rupture endpoints, where 

data are sparse, the new models differ by up to a factor of about 6. The smallest differences 

correspond with styles and magnitudes that are best represented in the FDHI Database.  

Improved aleatory variability modeling in the new FDMs captures the upper tails of the 

data distributions better than previously published models. For example, the 95th percentile 

prediction for 𝑴 8 at the rupture midpoint of a strike-slip fault is 40 m in the PEA11 model, but it 
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is only 15 m in KEA24. Upper-tail predictions for large magnitude reverse and normal events are 

also significantly smaller in the new models. 

The new FDMs use different definitions of displacement (as elaborated in Chapter 2), and 

we recommend hazard analysts and other end-users carefully consider the definitions and related 

modeling assumptions when applying the new models. Methods for adjusting model results for 

different participating ruptures (i.e., aggregate, sum-of-principal, and single principal) are 

generally not available, and displacement vector decomposition is not provided in the new FDMs 

that predict net displacement. Models that predict net displacement may need to be adjusted for 

fault dip because the fault-normal and dip-slip components are systematically underreported in the 

FDHI Database. Parameters that are not captured in the metrics and definitions used by a specific 

model may need to be estimated in site-specific fault displacement hazard evaluations. 

The four FDMs summarized in this report represent the state-of-the-art in fault 

displacement model development, and we anticipate widespread implementation of these models 

by hazard analysts. The comparisons in this report span a range of scenarios defined by style of 

faulting, magnitude, along-strike location, and percentile. While the range is sufficiently broad to 

provide end-users with an understanding of the performance of each model, it is not exhaustive, 

and some similarities and differences are obscured by the different definitions of displacement 

used in the models. We recommend hazard analysts evaluate the impact of the new models in their 

specific application.  

 

 



71 

 

REFERENCES 

Abrahamson, N., Atkinson, G., Boore, D., Bozorgnia, Y., Campbell, K., Chiou, B., Idriss, I., Silva, 

W., and Youngs, R. (2008). “Comparisons of the NGA ground-motion relations.” 

Earthquake Spectra, 24(1), 45–66. 

Al Atik, L. and Youngs, R. R. (2014). “Epistemic uncertainty for NGA-West2 models.” 

Earthquake Spectra, 30(3), 1301–1318. 

Biasi, G. P. and Weldon, R. J. (2006). “Estimating surface rupture length and magnitude of 

paleoearthquakes from point measurements of rupture displacement.” Bulletin of the 

Seismological Society of America 96(5): 1612–1623. DOI: 10.1785/0120040172. 

Bonilla, M. G., Mark, R. K., and Lienkaemper, J. J. (1984). “Statistical relations among earthquake 

magnitude, surface rupture length, and surface fault displacement.” Bulletin of the 

Seismological Society of America 74(6), 2379–2411. 

Chiou, B., Chen, R., Thomas, K., Milliner, C., Dawson, T., and Petersen, M. D. (in review). “Fault 

displacement model for surface principal rupture of strike-slip faults.” Earthquake Spectra. 

Chiou, B. S.-J., Chen, R., Thomas, K., Milliner, C. W. D., Dawson, T., and Petersen, M. D. (2023). 

“Surface Fault Displacement Models for Strike-Slip Faults.” Report No. GIRS-2022-07, 

Revision in progress, The B. John Garrick Institute for the Risk Sciences at UCLA 

Engineering, <https://www.risksciences.ucla.edu/girs-reports/2022/07>. 

Coppersmith, K. and Youngs, R. (2000). “Data needs for probabilistic fault displacement hazard 

analysis.” Journal of Geodynamics, 29(3-5), 329–343. 

Gregor, N., Abrahamson, N. A., Atkinson, G. M., Boore, D. M., Bozorgnia, Y., Campbell, K.W., 

Chiou, B. S.-J., Idriss, I., Kamai, R., Seyhan, E., et al. (2014). “Comparison of NGA-West2 

GMPEs.” Earthquake Spectra, 30(3), 1179–1197. 

Gregor, N., Addo, K., Abrahamson, N. A., Al Atik, L., Atkinson, G. M., Boore, D. M., Bozorgnia, 

Y., Campbell, K.W., Chiou, B. S., G¨ulerce, Z., et al. (2022). “Comparisons of the NGA-

subduction ground motion models.” Earthquake Spectra, 38(4), 2580–2610. 



 

72 

 

Hemphill-Haley, M. A. and Weldon, R. J. (1999). “Estimating prehistoric earthquake magnitude 

from point measurements of surface rupture.” Bulletin of the Seismological Society of 

America, 89(5), 1264–1279. 

Keefer, D. L. and Bodily, S. E. (1983). “Three-point approximations for continuous random 

variables.” Management Science, 29(5), 595–609. 

Kuehn, N. M., Kottke, A. R., Sarmiento, A. C., Madugo, C. M., and Bozorgnia, Y. (2024). “A 

fault displacement model based on the FDHI database.” Earthquake Spectra. Epub ahead 

of print. DOI: 10.1177/87552930241291077. 

Kuehn, N., Kottke, A., Madugo, C., Sarmiento, A., and Bozorgnia, Y. (2022). “UCLA-PG&E 

Fault Displacement Model.” Report No. GIRS-2022-06, Revision in progress, The B. John 

Garrick Institute for the Risk Sciences at UCLA Engineering, 

<https://www.risksciences.ucla.edu/girs-reports/2022/06>. 

Lavrentiadis, G. and Abrahamson, N. (2023). “Fault-displacement models for aggregate and 

principal displacements.” Earthquake Spectra. Epub ahead of print, 

<https://doi.org/10.1177/87552930231201531>. 

Lavrentiadis, G. and Abrahamson, N. (2019). “Generation of surface‐slip profiles in the 

wavenumber domain.” Bulletin of the Seismological Society of America, 109(3), 888-907. 

Lavrentiadis, G., Abrahamson, N., and Sarmiento, A. (2024). Event coordinate system for surface 

fault rupture: Release v0.1. Zenodo, <https://doi.org/10.5281/zenodo.12610853>. 

Lavrentiadis, G., Wang, Y., Abrahamson, N. A., Bozorgnia, Y., and Goulet, C. (2023). “A 

Seismologically Consistent Surface Rupture Length Model for Unbounded and Width-

Limited Events.” Earthquake Spectra. Epub ahead of print, <https://doi.org/ 

10.1177/87552930231205871>. 

Manighetti, I., Perrin, C., Gaudemer, Y., Dominguez, S., Stewart, N., Malavieille, J., and 

Garambois, S. (2020). “Repeated giant earthquakes on the Wairarapa fault, New Zealand, 

revealed by Lidar-based paleoseismology.” Scientific Reports, 10(1), 2124. 

Manighetti, I., Campillo, M., Sammis, C., Mai, P. M., and King, G. (2005). “Evidence for self‐

similar, triangular slip distributions on earthquakes: Implications for earthquake and fault 

mechanics.” Journal of Geophysical Research: Solid Earth, 110(B5). 

McCalpin, J. P. and Slemmons, D. B. (1998). “Statistics of Paleoseismic Data: Final Technical 

Report Submitted to US Geological Survey.” Report No. USGS-NEHRP Contract 1434-

HQ-96-GR-02752, GEO-HAZ Consulting, Inc. 

Moss, R. E. S., Thompson, S. C., Kuo, C.-H., Younesi, K., and Baumont, D. (2024). “New 

probabilistic fault displacement hazard models for reverse faulting.” Earthquake Spectra. 

Epub ahead of print. DOI: 10.1177/87552930241288560. 



 

73 

 

Moss, R., Thompson, S., Kuo, C.-H., Younesi, K., and Baumon, D. (2022). “Reverse Fault 

PFDHA.” Report No. GIRS-2022-05, Revised 17 January 2024, The B. John Garrick 

Institute for the Risk Sciences at UCLA Engineering, 

<https://www.risksciences.ucla.edu/girs-reports/2022/05>. 

Moss, R. E. S. and Ross, Z. E. (2011). “Probabilistic Fault Displacement Hazard Analysis for 

Reverse Faults.” Bulletin of the Seismological Society of America, 101(4), 1542–1553. 

Petersen, M. D., Dawson, T. E., Chen, R., Cao, T., Wills, C. J., Schwartz, D. P., and Frankel, A. 

D. (2011). “Fault displacement hazard for strike-slip faults.” Bulletin of the Seismological 

Society of America, 101(2), 805– 825. 

Sarmiento, A., Lavrentiadis, G., Bozorgnia, Y., Chen, R., Chiou, B., Dawson, T., Kottke, A., 

Kuehn, N., Madugo, C., Moss, R., Thompson, S., and Zandieh, A. (in review). 

“Comparisons of FDHI fault displacement models for principal and aggregate 

displacement.” Earthquake Spectra. 

Sarmiento, A., Madugo, D., Bozorgnia, Y., Shen, A., Mazzoni, S., Lavrentiadis, G., Dawson, T., 

Madugo, C., Kottke, A., Thompson, S., Baize, S., Milliner, C., Nurminen, F., Boncio, P., 

and Visini, F. (2021). “Fault Displacement Hazard Initiative Database.” Report No. GIRS-

2021-08, Revision 3.3 dated 29 May 2024, The B. John Garrick Institute for the Risk 

Sciences at UCLA Engineering, <https://www.risksciences.ucla.edu/girs-

reports/2021/08>. 

Spudich, P. and Chiou, B. (2015). “Strike-Parallel and Strike-Normal Coordinate System Around 

Geometrically Complicated Rupture Traces – Use by NGA-West2 and Further 

Improvements.” Report No. OFR 2015-1028, US Department of the Interior, US 

Geological Survey. 

Stepp, J. C., Wong, I., Whitney, J., Quittmeyer, R., Abrahamson, N., Toro, G., Youngs, R., 

Coppersmith, K., Savy, J., Sullivan, T., and Yucca Mountain PSHA Project Members 

(2001). “Probabilistic seismic hazard analyses for ground motions and fault displacement 

at Yucca Mountain, Nevada.” Earthquake Spectra, 17(1), 113–151. 

Takao, M., Tsuchiyama, J., Annaka, T., and Kurita, T. (2013). “Application of probabilistic fault 

displacement hazard analysis in Japan.” Journal of Japan Association for Earthquake 

Engineering 13: 17–36. DOI: 10.5610/jaee.13.17. 

Takao, M., Kaneto, T., and Kurita, T. (2018). “Outline of the PFDHA method and recent studies 

on PFDHA in Japan.” In: Best Practices in Physics-based Fault Rupture Models for 

Seismic Hazard Assessment of Nuclear Installations, Cadarache-Château, France, 14-16 

May 2018. 

Thomas, K., Milliner, C. W., Chen, R., Chiou, B. S.-J., Dawson, T., and Petersen, M. D. (2024). 

“Least Cost Path Analysis as an Objective and Automated Method to Define the Primary 



 

74 

 

Fault Trace for Probabilistic Fault Displacement Hazard Analysis.” Earthquake Spectra. 

Epub ahead of print, <https://doi.org/10.1177/87552930231205878>. 

Valentini, A., Fukushima, Y., Contri, P., Ono, M., Sakai, T., Thompson, S. C., Viallet, E., Annaka, 

T., Chen, R., Moss, R. E., et al. (2021). “Probabilistic fault displacement hazard assessment 

(PFDHA) for nuclear installations according to IAEA safety standards.” Bulletin of the 

Seismological Society of America, 111(5), 2661–2672. 

Wells, D. L. and Coppersmith, K. J. (1994). “New empirical relationships among magnitude, 

rupture length, rupture width, rupture area, and surface displacements.” Bulletin of the 

Seismological Society of America, 84(4), 974–1002. 

Wells, D. L. and Coppersmith, K. J. (1993). "Likelihood of surface rupture as a function of 

magnitude." Seismological Research Letters, 64(1), 54. 

Wesnousky, S. G. (2008). “Displacement and geometrical characteristics of earthquake surface 

ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake 

rupture.” Bulletin of the Seismological Society of America, 98(4), 1609–1632. 

Youngs, R. R., Arabasz, W. J., Anderson, R. E., Ramelli, A. R., Ake, J. P., Slemmons, D. B., 

McCalpin, J. P., Doser, D. I., Fridrich, C. J., Swan, F. H., Rogers, A. M., Yount, J. C., 

Anderson, L. W., Smith, K. D., Bruhn, R. L., Knuepfer, P. L. K., Smith, R. B., DePolo, C. 

M., O’Leary, D. W., Coppersmith, K. J., Pezzopane, S. K., Schwartz, D. P., Whitney, J. 

W., Olig, S. S., and Toro, G. R. (2003). “A Methodology for Probabilistic Fault 

Displacement Hazard Analysis (PFDHA).” Earthquake Spectra, 19(1), 191–219. 

   

 

 



Appendix A:  

Preliminary Comparisons of Results from Different 
Displacement Summation Approaches 

 

 
 

 



Appendix A, Page 1 

 

1 Introduction  

This Appendix documents the results of an FDHI Working Group tasked with understanding the 

impact of different displacement summation methodologies. Three of the four new FDHI models 

(KEA24, CEA25, and LA23) predict displacements summed across multiple (sub)parallel 

ruptures. Summed displacements were considered to be a more stable metric by some developers 

to better account for displacement on complex surface rupture patterns that are not captured in the 

modeling. All three models use a summation approach that accounts for irregular spacing of 

displacement measurement sites. Each team (KEA24, CEA25, and LA23) used their own method 

to sum the displacements based on data in the FDHI Database.  

The CEA25 model sums displacements on principal ruptures, which is abbreviated 𝐷𝑠𝑝 in 

this Appendix. The KEA24 model sums displacements across principal and distributed ruptures, 

which is referred to as aggregate displacement and is abbreviated 𝐷𝑎𝑔𝑔. The LA23 model provides 

formulations for both 𝐷𝑠𝑝 and 𝐷𝑎𝑔𝑔. 

The KEA24 model applies a custom algorithm that computes an aggregated displacement 

value for each principal measurement in the database (referred to as “seed” measurement herein), 

using an hourglass-shaped search window and linearly interpolating displacements on the same 

rupture. The LA23 model computes the summed displacements on a segment basis. They used 

geologic judgment to determine key rupture segments and applies the ECS algorithm to create a 

Segment Coordinate System (SCS) for each key segment. The SCS ordinates are used to identify 

(sub)parallel ruptures, and the displacements on each (sub)parallel rupture are linearly interpolated 

at the location of interest and summed. The CEA25 model sums principal displacements based on 

geologic judgment and limited linear interpolation between measurement sites. More information 

on the summation approach used in each model can be found in the accompanying reports and 

journal publications cited in the main report. 

A Working Group convened in early 2021 to review different summation approaches by 

evaluating data from six earthquakes:  

• 1992 𝑴 7.28 Landers, California (FDHI EQ_ID =1) 

• 1999 𝑴 7.13 Hector Mine, California (FDHI EQ_ID =2) 

• 1987 𝑴 6.54 Superstition Hills, California (FDHI EQ_ID =8) 

• 2019 𝑴 6.4 Ridgecrest-1, California (FDHI EQ_ID =42) 



• 2019 𝑴 7.1 Ridgecerest-2, California (FDHI EQ_ID =43) 

• 1995 𝑴 7.0 Neftegorsk, Russia (FDHI EQ_ID =65) 

These events were selected to capture a range of surface rupture complexity (i.e., 

overlapping or parallel segments) and measurement site density and spacing. All are strike-slip 

earthquakes because the CEA25 model did not consider dip-slip events. Section 2 of this Appendix 

presents the plots and discussion for each event, and the Section 3 provides summarizes the results. 
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2 Evaluations 

The results from the evaluations for each earthquake (Landers, Hector Mine, Superstition Hills, 

Ridgecrest-1, Ridgecrest-2, and Neftegorsk) are presented separately below. Four figures were 

used to qualitatively compare aggregate or sum-of-principal results from different modeling teams 

for each event. The first figure shows the spatial distribution and amplitude of observations 

(measurement sites) from the FDHI Database. The observations are color-coded based on 

classification or rank (i.e., cumulative, principal, or distributed). Marginal density plots are shown 

for each model to visually compare the spatial distribution and amplitude of displacements 

between each model. Although natural log transformations are not used in the new models, the 

observations span a broad range, so the y-axis uses natural log units to improve readability. In the 

second figure, aggregate or sum-of-principal values for the same "seed" measurement site are 

compared directly on pair plots with 1:1 identity lines. The third figure shows model-to-model 

differences between aggregate or sum-of-principal values (in natural log units) with surface 

rupture maps to better understand how differences relate to rupture patterns. The last figure 

presents seed-to-summed log ratios as a function of seed displacement understand how aggregate 

or sum-of-principal amplitude depends on seed amplitude. 

Results from a new wide-aperture fault displacement model (i.e., discrete displacement and 

inelastic deformation) by Milliner et al. (2020 and in prep.)1 were also available to the Working 

Group for several of the events considered in this Appendix. For the purposes of this discussion, 

the wide-aperture results are omitted from the plots because the displacements include continuous 

deformation components such as warping and thus are not equivalent to the aggregate or sum-of-

principal values in the other models.  

 
1 Milliner, C., Avouac, J.-P., Chen, R., Aati, S., Chiou, B., Donnellan, A., Dawson, T., Madugo, C., and Dolan, J. F. 

(2020). “Development of a geodetic-based probabilistic fault displacement hazard analysis using near-field geodetic 

imaging data.” AGU Fall Meeting Abstracts, Vol. 2020, T042–07. 



Appendix A, Page 4 

 

2.1 LANDERS 

The 1992 𝑴 7.28 Landers, California event was selected because it is a complex and well-

documented event in the FDHI Database. Additionally, preliminary results from a new dynamic 

rupture model validation study by Wang and Goulet (2021)2 were available. 

The results of the SCEC simulations (Wang and Goulet, 2021) are shown on Figure A.1. 

Their results are provided with uniform spacing along the rupture; accordingly, the results are not 

readily correlated with the FDHI Database measurement sites and are therefore omitted from the 

other plots. 

The marginal density plot (Figure A.1) shows strong agreement in the spatial distribution 

of measurements along the rupture length (top axis), suggesting the different summation 

approaches do not significantly down-sample the number of measurements. (An exception is the 

SCEC model, which provides uniformly-sampled locations.) The displacement amplitude 

densities for the KEA, CEA, and SCEC models are in good agreement. The LA results are 

generally similar but show more contribution from smaller values (right axis). 

Generalized model comparisons can be made from the pair plots (Figure A.2) and are 

consistent with the trends in the displacement density plots. For example, the KEA and CEA values 

are generally higher than the comparable LA values (i.e., 𝐷𝑎𝑔𝑔 and 𝐷𝑠𝑝, respectively). 

Visual inspection of the differences in values between models as a function of mapped 

ruptures (Figure A.3) reveals the largest differences are spatially associated with rupture 

complexity. The results are consistent with the pair plots; for example, values in the KEA and CEA 

models are generally higher than in the comparable LA model. 

The seed-to-summed log ratios (Figure A.4) reveal some consistent trends. The ratios 

decrease as the seed (single-site measurement) increases. We infer this is due to a combination of 

spatial concentration of displacement for larger displacements (i.e., less complex rupture patterns) 

and the (numerically) relatively reduced effect of including smaller, distributed displacements. 

Additionally, the KEA ratios are systematically lower than the others, which we infer is due to 

inclusion of more distributed displacements and the use of an hourglass-shaped search window. 

 
2 Wang, Y., and Goulet, C. (2021). “Validation of fault displacements from dynamic rupture simulations against the 

observations from the 1992 Landers earthquake.” Bulletin of the Seismological Society of America, 111(5), 2574-

2594. 
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Figure A.1.  Displacement measurements (Cumulative, Principal, and Distributed rank) from 
FDHI Database for 1992 𝑴 7.28 Landers, California (FDHI EQ_ID =1) earthquake and 
summed displacements from KEA24, CEA25, and LA23 models. Marginal density 
plots shown for each model. 
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Figure A.2.  Comparison of summed displacement results for each model (KEA24, CEA25, and 
LA23) based on measurement site for 1992 𝑴 7.28 Landers, California earthquake. 
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Figure A.3.  Comparison of summed displacement results for 𝐷𝑎𝑔𝑔 and 𝐷𝑠𝑝 among the models 

as a function of rupture length for 1992 𝑴 7.28 Landers, California earthquake. 
Principal (red) and distributed (blue) ruptures shown in projected (ECS) coordinated 
in bottom panel. 
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Figure A.4.  Comparison of summed displacement results for each model (KEA24, CEA25, and LA23) as a function of seed measurement 
for 1992 𝑴 7.28 Landers, California earthquake. 
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2.2 HECTOR MINE 

The 1999 𝑴 7.13 Hector Mine, California event was selected because it is a well-documented 

event with some rupture complexity. Additionally, Dr. Beth Arcos from Wood, PLC provided 

sum-of-principal results for this event based on a manual geologic assessment performed for the 

California High Speed Rail (HSR) project. 

The marginal density plot (Figure A.5) shows strong agreement in the spatial distribution 

of measurements along the rupture length for the KEA and LA models (top axis). The CEA and 

HSR models have more contribution from the southern end of the rupture (larger u-axis values) 

because both teams treated the Mesquite Lake Fault as a principal rupture. This is a technically 

defensible alternative interpretation of the rankings in the FDHI Database. The displacement 

amplitude densities are in strong agreement for all models. The HSR results show a slightly higher 

contribution from smaller values is due to treating the Mesquite Lake Fault as a principal rupture. 

Over a dozen measurements are available on this fault and they are all relatively low, which affects 

the displacement amplitude density distribution.   

Generalized model comparisons can be made from the pair plots (Figure A.6) and are 

consistent with the trends in the displacement density plots. For example, the KEA, CEA, and HSR 

values are systematically higher than the comparable LA values (i.e., 𝐷𝑎𝑔𝑔 or 𝐷𝑠𝑝). The HSR 

results are generally higher than the CEA and LA results.  

Visual inspection of the differences in values between models as a function of mapped 

ruptures (Figure A.7) reveals the largest differences are spatially associated with principal rupture 

complexity (particularly the bifurcation of the Bullion Fault near u = 34,000). Other key 

differences are at the southern end of the rupture (u > 40,000) where the CEA and HSR models 

treated the Mesquite Lake Fault as a principal rupture and therefore have more measurements in 

this area. The results are consistent with the pair plots; for example, values in the HSR model are 

systematically higher than the CEA and LA models.  

The seed-to-summed log ratios (Figure A.8) reveal some consistent trends. The ratios 

decrease as the seed (single-site measurement) increases. Additionally, the KEA ratios are 

generally lower than the others. Both of these trends were observed for the Landers evaluation and 

are discussed in more detail at the end of Section 2.1. 
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Figure A.5.  Displacement measurements (Cumulative, Principal, and Distributed rank) from 
FDHI Database for 1999 𝑴 7.13 Hector Mine, California (FDHI EQ_ID =2) 
earthquake and summed displacements from KEA24, CEA25, and LA23 models. 
Marginal density plots shown for each model. 
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Figure A.6.  Comparison of summed displacement results for each model (KEA24, CEA25, and 
LA23) based on measurement site for 1999 𝑴 7.13 Hector Mine, California 
earthquake. 

 



Appendix A, Page 12 

 

 

Figure A.7.  Comparison of summed displacement results for 𝐷𝑎𝑔𝑔 and 𝐷𝑠𝑝 among the models 

as a function of rupture length for 1999 𝑴 7.13 Hector Mine, California earthquake. 
Principal (red) and distributed (blue) ruptures shown in projected (ECS) coordinated 
in bottom panel. 



Appendix A, Page 13 

 

 

Figure A.8.  Comparison of summed displacement results for each model (KEA24, CEA25, and LA23) as a function of seed measurement 
for 1999 𝑴 7.13 Hector Mine, California earthquake. 
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2.3 SUPERSTITION HILLS 

The 1987 𝑴 6.54 Superstition Hills, California event was selected because it is a well-documented 

event with relatively simple but multi-stranded ruptures. 

The marginal density plot (Figure A.9) shows strong agreement in the spatial distribution 

of measurements along the rupture length for the KEA, CEA, and LA 𝐷𝑠𝑝 models. Differences in 

the LA 𝐷𝑎𝑔𝑔 model, relative to KEA, spatially correspond with areas containing distributed 

displacements and are likely due to choices in the interpolation approach for incorporating 

distributed displacement measurements. The displacement amplitude densities are in strong 

agreement for all models.  

Generalized model comparisons can be made from the pair plots (Figure A.10) and are 

consistent with the trends in the displacement density plots. For example, most of the values fall 

on the 1:1 equality line for each comparison. Where they differ, the CEA results are generally 

higher than the LA and KEA results for both 𝐷𝑎𝑔𝑔 and 𝐷𝑠𝑝, and the LA 𝐷𝑎𝑔𝑔 results are generally 

higher than KEA.  

Visual inspection of the differences in values between models as a function of mapped 

ruptures (Figure A.11) reveals that the largest differences are spatially associated with rupture 

complexity, particularly at the southern end of the rupture (u > 21,000). Consistent with the pair 

plots, the CEA results are higher than LA, and LA is higher than KEA, in the few areas where 

differences occur. 

The seed-to-summed log ratios (Figure A.12) reveal some consistent trends. The ratios 

decrease as the seed (single-site measurement) increases (as observed for other events; see 

discussion at the end of Section 2.1). The LA ratios are generally lower than the others. 
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Figure A.9.  Displacement measurements (Cumulative, Principal, and Distributed rank) from 
FDHI Database for 1987 𝑴 6.54 Superstition Hills, California (FDHI EQ_ID =8) 
earthquake and summed displacements from KEA24, CEA25, and LA23 models. 
Marginal density plots shown for each model. 
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Figure A.10. Comparison of summed displacement results for each model (KEA24, CEA25, and 
LA23) based on measurement site for 1987 𝑴 6.54 Superstition Hills, California 
earthquake. 
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Figure A.11. Comparison of summed displacement results for 𝐷𝑎𝑔𝑔 and 𝐷𝑠𝑝 among the models 

as a function of rupture length for 1987 𝑴 6.54 Superstition Hills, California 
earthquake. Principal (red) and distributed (blue) ruptures shown in projected (ECS) 
coordinated in bottom panel. 
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Figure A.12. Comparison of summed displacement results for each model (KEA24, CEA25, and LA23) as a function of seed measurement 
for 1987 𝑴 6.54 Superstition Hills, California earthquake. 

 

 



Appendix A, Page 19 

 

2.4 RIDGECREST-1 

The 2019 𝑴 6.4 Ridgecrest-1, California event was selected because it is a well-documented event. 

The marginal density plot (Figure A.13) shows strong agreement in the spatial distribution 

of measurements along the rupture length for all models. The displacement amplitude densities 

span a broad range in all models and are in reasonable agreement.  

Generalized model comparisons can be made from the pair plots (Figure A.14) and are 

consistent with the trends in the displacement density plots. Most of the values fall on the 1:1 

equality line for each comparison. Where they differ, the LA 𝐷𝑎𝑔𝑔 results are slightly higher than 

KEA, and the CEA results are generally higher than the LA and KEA results for both 𝐷𝑎𝑔𝑔 and 

𝐷𝑠𝑝. CEA treated some of the northern ruptures as principal instead of distributed, which is a 

technically defensible alternative interpretation of the rankings in the FDHI Database. We infer 

that their approach for linear interpolation between measurement sites is contributing to the 

differences because both the KEA and LA models include distributed measurements. 

Visual inspection of the differences in values between models as a function of mapped 

ruptures (Figure A.15) reveals the largest differences are spatially associated with the northeast 

reach of the rupture (u < 2,500), where the CEA model treated some of the ruptures as principal 

instead of distributed.  

The seed-to-summed log ratios (Figure A.16) reveal some consistent trends. The ratios 

decrease as the seed (single-site measurement) increases (as observed for other events; see 

discussion at the end of Section 2.1). The KEA and CEA ratios are generally lower than the LA 

ratios. 
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Figure A.13. Displacement measurements (Cumulative, Principal, and Distributed rank) from 
FDHI Database for 2019 𝑴 6.4 Ridgecrest-1, California (FDHI EQ_ID =42) 
earthquake and summed displacements from KEA24, CEA25, and LA23 models. 
Marginal density plots shown for each model. 
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Figure A.14. Comparison of summed displacement results for each model (KEA24, CEA25, and 
LA23) based on measurement site for 2019 𝑴 6.4 Ridgecrest-1, California 
earthquake. 
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Figure A.15. Comparison of summed displacement results for 𝐷𝑎𝑔𝑔 and 𝐷𝑠𝑝 among the models 

as a function of rupture length for 2019 𝑴 6.4 Ridgecrest-1, California earthquake. 
Principal (red) and distributed (blue) ruptures shown in projected (ECS) coordinated 
in bottom panel. 
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Figure A.16. Comparison of summed displacement results for each model (KEA24, CEA25, and LA23) as a function of seed measurement 
for 2019 𝑴 6.4 Ridgecrest-1, California earthquake. 
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2.5 RIDGECREST-2 

The 2019 𝑴 7.1 Ridgecerest-2, California event was selected because it is a well-documented 

event with multi-stranded ruptures. 

The marginal density plot (Figure A.17) shows good agreement in the spatial distribution 

of measurements along the rupture length for all models. Differences in the LA 𝐷𝑎𝑔𝑔 model, 

relative to KEA, spatially correspond with areas containing distributed displacements and are 

likely due to choices in the interpolation approach for incorporating distributed displacement 

measurements. The displacement amplitude densities are in strong agreement for all models. The 

results of the pair plots (Figure A.18) are in very strong agreement, with most of the values falling 

on the 1:1 equality line for each comparison.  

Visual inspection of the differences in values between models as a function of mapped 

ruptures (Figure A.19) reveals the largest differences are spatially associated with increased 

rupture complexity. However, the overall differences are minor, consistent with the plots on 

Figures A.17 and A.18. 

The seed-to-summed log ratios (Figure A.20) reveal some consistent trends. The ratios 

decrease as the seed (single-site measurement) increases (as observed for other events; see 

discussion at the end of Section 2.1). The CEA and LA ratios are generally lower than the KEA 

ratios. 
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Figure A.17. Displacement measurements (Cumulative, Principal, and Distributed rank) from 
FDHI Database for 2019 𝑴 7.1 Ridgecerest-2, California (FDHI EQ_ID =43) 
earthquake and summed displacements from KEA24, CEA25, and LA23 models. 
Marginal density plots shown for each model. 
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Figure A.18. Comparison of summed displacement results for each model (KEA24, CEA25, and 
LA23) based on measurement site for 2019 𝑴 7.1 Ridgecerest-2, California 
earthquake. 
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Figure A.19 Comparison of summed displacement results for 𝐷𝑎𝑔𝑔 and 𝐷𝑠𝑝 among the models 

as a function of rupture length for 2019 𝑴 7.1 Ridgecerest-2, California earthquake. 
Principal (red) and distributed (blue) ruptures shown in projected (ECS) coordinated 
in bottom panel. 
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Figure A.20. Comparison of summed displacement results for each model (KEA24, CEA25, and LA23) as a function of seed measurement 
for 2019 𝑴 7.1 Ridgecerest-2, California earthquake. 
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2.6 NEFTEGORSK 

The 1995 𝑴 7.0 Neftegorsk, Russia event was selected the surface rupture patterns are relatively 

simple. 

The marginal density plot (Figure A.21) shows strong agreement in the spatial distribution 

of measurements along the rupture length for all models. The displacement amplitude densities are 

also in strong agreement for all models. This is expected due to the simplicity of the surface rupture 

data. 

Generalized model comparisons can be made from the pair plots (Figure A.22) and are 

consistent with the trends in the displacement density plots. Where there are differences, the CEA 

model results are almost always slightly higher.  

Visual inspection of the differences in values between models as a function of mapped 

ruptures (Figure A.23) reveals the largest differences are spatially associated with the northeast 

reach of the rupture (u < 9,000), where the CEA model treated some of the ruptures as principal 

instead of distributed. We infer that their approach for linear interpolation between measurement 

sites is contributing to the differences. In this area, the CEA results are higher than LA, and the 

LA results are higher than KEA. 

The seed-to-summed log ratios (Figure A.24) reveal some consistent trends. The ratios 

decrease as the seed (single-site measurement) increases (as observed for other events; see 

discussion at the end of Section 2.1). The ratios amongst all models are similar overall. 
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Figure A.21. Displacement measurements (Cumulative, Principal, and Distributed rank) from 
FDHI Database for 1995 𝑴 7.0 Neftegorsk, Russia (FDHI EQ_ID =65) earthquake and 
summed displacements from KEA24, CEA25, and LA23 models. Marginal density 
plots shown for each model. 
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Figure A.22. Comparison of summed displacement results for each model (KEA24, CEA25, and 
LA23) based on measurement site for 1995 𝑴 7.0 Neftegorsk, Russia earthquake. 
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Figure A.23. Comparison of summed displacement results for 𝐷𝑎𝑔𝑔 and 𝐷𝑠𝑝 among the models 

as a function of rupture length for 1995 𝑴 7.0 Neftegorsk, Russia earthquake. 
Principal (red) and distributed (blue) ruptures shown in projected (ECS) coordinated 
in bottom panel. 
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Figure A.24. Comparison of summed displacement results for each model (KEA24, CEA25, and LA23) as a function of seed measurement 
for 1995 𝑴 7.0 Neftegorsk, Russia earthquake. 
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3 Summary 

A Working Group convened in early 2021 to review results from different summation approaches 

for six earthquakes. This appendix documents comparisons in the form of measurement site and 

displacement amplitude density distributions, as well direct comparisons of the summed 

displacement amplitudes used in each model for each seed measurement site.  

Overall, we find reasonable agreement between the LA23, KEA24, and CEA25 models. 

The differences are generally modest and are due to different methods used to sum measurements 

across (sub)parallel faults, using alternative rank classifications, or the inclusion of distributed 

displacement data. For example, the CEA25 model does not include distributed displacement 

measurements in their summation and used alternative interpretations of the rankings in the FDHI 

Database in some cases. These are modeler decisions and represent a component of epistemic 

uncertainty. Different techniques for summing the values are used among the models, which is 

also a component of modeling epistemic uncertainty. However, based on the findings of this 

Appendix, the differences in the summation methodology are modest. 
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