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Motivation: surface displacement vs length

7 | ' ' ‘ We investigate whether the slip of large
earthquakes can continue to increase with
&l a o the rupture length far beyond the
D seismogenic depth (L model, as described
S o. by Sholtz, 1982).
£

O Studying the relationship of surface
- _'_ e mE = | displacement and rupture length can:

A, ® 1. have important implications for
%o .

3 earthquake mechanism.

2. contribute to improved earthquake

2 rupture forecast.
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Modified from Figure 1 in Shaw (2013).
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Whether does considering geological slip rate help

model the data?

Fault-Scaling Relationships Depend on the Average Fault-Slip Rate

by John G. Anderson, Glenn P. Biasi,” and Steven G. Wesnousky

Strike slip
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This term may infer the stress

®  Residual from Top Plot
M, =-0.17 log(S . / 4.8 mm/yr) ]

drop has a dependence of
geological slip rate
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Seismological support

The Shear Deformation Zone and the Smoothing of
Faults With Displacement

Clément Perrin'? (), Felix Waldhauser' (), and Christopher H. Scholz’
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Derive SR-dependent surface displacement model

Ao 3L

—7 L S Lmax Small circular fault

U

5= a1
7 i n L > Lmax Long rectangular fault
3L Limax Modified from Shaw (2013)
SR-dependent stress drop
AO- — ClsRcz
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Three models

A, + A, log(SR) — 1og(3lL) L<L,_ .
log($) =

A, + A, log(SR) — log(=- + Liax) L>L,.

Model-ll: sr independent stress drop and unknown saturation length
7
Bl p— 10g(3_L) L < Lmax
log(S) =

4 1
Bl—log(3L +-—) L>L,,

Model-lll: 4mPa and 5km width (black solid line in Figure 1)
log(4/30) — log(57) L <30 km
log(S) = L
log(4/30) — log( 3 + 30) L> 30 km
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Prepare data

We aggregate the fault displacement databases of Biasi et al. (2013) and from the Fault Displacement Hazard
Initiative (Sarmiento, et al., 2019), along with the slip rate dataset of Anderson et al. (2017), which together include
48 strike-slip earthquakes (Table 1).

Country list Earthquake name list

China, |ran, Name Year Name Year
. Ridgecrest sequence 2019 Luhuo 1973
Japan 2 !VleXICO, Kumamoto 2016 Tonghai 1970
Mongolia, New Napa 2014 Borrego Mtn 1968
Zealand, Balochistan 2013 Parkfield 1966
Nicaragua’ Darfield 2010 Alake Lake 1963
Pakistan : Yushu 2010 GObI-.AltaI 1957
e i’ El Mayor Cucapah 2010 San Miguel 1956
Philippines, Parkfield 2004 Fairview Peak 1954
Russia, Turkey, Chuya 2003 Gerede-Bolu 1944
USA Denali 2002 Tosya 1943
Kunlun 2001 Tottori 1943
Duzce 1999 Niksar-Erbaa 1942
Hector Mine 1999 Imperial Valley 1940
1zmit 1999 Erzincan 1939
Table 1: List of Fandoga 1998 Tuosuo Lake 1937
used earthquakes Manyi 1997 Fuyun 1931
in this StUdy Zirkuh 1997 Northlzu 1930
Sakhalin Island 1995 Luoho-Qianjiao 1923
Landers 1992 Haiyuan 1920
Luzon 1990 San Francisco 1906
Superstition Hill 1987 Bulnay 1905
Sirch 1981 Owens Valley 1872
Imperial Valley 1979 Fort Tejon 1857

Motagua 1976
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Consistently combine Biasi et al (2013) and FDHI

(a) 1999 Mw 7.1 Hector Mine Earthquake
e Running Max
5 = Raw Average Displacement (RAD)
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Along-strike distance (km)
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Average displacement (m, Biasi et al., 2013)

We adopt the definition of envelope average displacement (EAD) from Biasi et al. (2013) and apply it
to the FDHI data; we compare those estimates for the same events, confirming that there is no

systematic bias between the datasets.
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Consider uncertainty in regression
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Biasi et al (2013)
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In this study, we also consider uncertainties of average displacement, rupture length and
geological slip rate. Uncertainties of these quantities are obtained from multiple estimates for
a given event or are set to 20% of the estimate if only one set of measurements is available.

2/17/22 Southern California Earthquake Center




Regression method

We use 3 distinct models for our data.
For each earthquake, average

displacement (S), rupture Length (L) If the preferred value is not the average of min
and slip rate (SR)are uniformly chosen and max, the probability distribution for
from the range of uncertainties with the randomized value of L is as follows (50%
preferred value set as the median. between min and preferred):

1
We solve for 10,000 randomized __ JeEr_pumy (caseA)
combinations of S, L and SR for p(LE) - 1 (caseB)
coefficients (A7, A2, Lmax, B1) by using Lr=-LE) ’
a segmented linear regression
technique.
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Regression result

For model 1, we first test §
whether the SR dataset e
improve modeling or overfit K . S & e =
data by adding a regression i -

parameter

(1) Use random SR
(2) Cross-validation: Split data into training

and testing sets

Total Dataset

|< >

60% 40%
Train Test

Regression\jPrediction

Accuracy = MSE(test)/MSE(train)
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Regression result

(a)
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Compare results of three models
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3 metrics for model comparison
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1@ Compare with results without events on creeping faults

o and from linear-scale regression

Landers

Hector
Mine

Parkfield All events in log-log scale:  Events excluding creeping All events in linear scale:

events (2 Parkfield):

Earthquake stress drop (MPa)
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Whether are these parameters physically plausible?

The exponent A, s in the range of

0.08-0.23 + 0.02 (std), which are @ gty ) e
well  consistent  with  the | e | S | 8
seismological observations, lab — e | = >
experiments and theoretical - —Siope=-005 - z
predictions. STTNECSETTI T I 8
(a) Comparison of stress drop §
with geological slip rate between ?-2‘? TR P
the model-l in this study and that = Normalized loading rate
derived from seismological data 3 | N
in Perrin et al (2021). (b) g | B meal GO17 |

. . w —5 He etal (2003) o
Comparison of normalized stress I C A predbyHeatal 0009 || ©
drop with normalized loading rate —y 2
among numerical simulations .
(lower group), lab experiments i 1 : g
(middle group), seismological E
and field observations (upper Bl | | | | “
g rou p ) ] 10 10° 10! 10? 102 10" 10° 10!
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Fault maturity vs Surface displacement localization

(2) (b)
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Relationship between the ratio of surface average (S) and fault-plane average (estimated from magnitude)
displacements with fault maturity based on the seismogenic width models.

Surface displacement localization is correlated with the
fault maturity, implying a mature fault has a larger partition
of slip on the surface regardless of seismogenic width
model used in inferring fault-plane average displacement.
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Take-home messages

Stress drop has a power-law relationship with the geological slip rate (Fault maturity): A mature fault has a
smaller stress drop.

The model implementing slip rate dependent stress drop better models the surface displacement data.
The exponent from the regression (0.08-0.23) is supported by broad cross-scale evidences (seismology, lab
experiment and numerical simulation).

Surface displacement localization is also related with fault maturity: A mature fault has a larger portion slip on the
ground.
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